Skip to main content
Log in

Is correspondence search in human stereo vision a coarse-to-fine process?

  • Original Papers
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

One possible strategy for the solution of the correspondence problem of stereo matching is the coarse-to-fine mechanism: The matching process starts with a lowpassfiltered version of the stereogram where only a few, high-contrast image features can be extracted and the probability of false matches is therefore low. In subsequent stages, information from higher spatial frequencies is used gradually to improve the correspondence data obtained on the coarser scales. Coarse-to-fine strategies predict that information from coarse scale is used to disambiguate matching information on finer scales. We have tested this prediction by means of the wallpaper illusion using periodic intensity-profiles with different matching ambiguities on different spatial scale. Our psychophysical experiments show (i) that unambiguous information at coarse scale is not always used to disambiguate finer scale information, (ii) that unambiguous fine-scale information can be used to disambiguate coarsescale information and (iii) that low spatial frequency is more efficient for disambiguation than higher frequency. We conclude that the human stereo vision system does not always proceed from coarse to fine. As an alternative scheme for scale-space integration, we discuss more symmetric schemes such as maximum likelihood combinations of data from different channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arndt PA, Mallot HA, Bülthoff HH (1995) Human Stereovision without localized image-features. Biol Cybern, 72:279–293

    CAS  PubMed  Google Scholar 

  2. Blake R, Yang Y, Wilson HR (1991) On the coexistence of stereo and binocular rivalry. Vision Res 31:1191–1203

    Article  CAS  PubMed  Google Scholar 

  3. Blakemore C, Campbell FW (1969) On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images. J Physiol (Lond) 203:237–260

    CAS  Google Scholar 

  4. Brewster D (1844) On the knowledge of distance given by binocular vision. Trans R Soc Edinburgh 15:663–674

    Google Scholar 

  5. Bülthoff HH, Mallot HA (1988) Integration of depth modules: stereo and shading. J Opt Soc Am A 5:1749–1758

    PubMed  Google Scholar 

  6. Burt PJ, Adelson EH (1983) The Laplacian pyramid as a compact image code. IEEE Trans Commun 31:532–540

    Article  Google Scholar 

  7. Clark JJ, Yuille AL (1990) Data fusion for sensory information processing systems. Kluwer, Boston

    Google Scholar 

  8. Cogan AI, Lomakin AJ, Rossi AF (1993) Depth in anticorrelated stereograms: effects of spatial density and interocular delay. Vision Res 33:1959–1975

    Article  CAS  PubMed  Google Scholar 

  9. De Valois RL, De Valois KK (1988) Spatial vision. (Oxford psychology series, no. 14) Oxford University Press, Oxford

    Google Scholar 

  10. Foley JD, Dam A van, Feiner SK, Hughes JF (1990) Computer graphics: principles and practice, 2nd edn. Addison-Wesley, Reading, Mass

    Google Scholar 

  11. Grossberg S, Marshall JA (1989) Stereo boundary fusion by cortical complex cells: a system of maps, filters, and feedback networks for multiplexing distributed data. Neural Networks 2:29–51

    Google Scholar 

  12. Harmon LD, Julesz B (1973) Effects of two-dimensional filtered noise. Science 180:1194–1197

    CAS  PubMed  Google Scholar 

  13. Hartmann G (1982) Recursive features of circular receptive fields. Biol Cybern 43:199–208

    Article  CAS  PubMed  Google Scholar 

  14. Hodges LF (1992) Time-multiplexed stereoscopic computer graphics. IEEE Comput Graphics Applications 12(2):20–30

    Google Scholar 

  15. Jordan JR III, Geisler WS, Bovik AC (1990) Color as a source of information in the stereo correspondence process. Vision Res 30:1955–1970

    Article  PubMed  Google Scholar 

  16. Julesz, B.: Foundations of Cyclopean Perception. Chicago and London: The University of Chicago Press, 1971

    Google Scholar 

  17. Julesz B, Miller JE (1975) Independent spatial-frequency-tuned channels in binocular fusion and rivalry. Perception 4:125–143

    Google Scholar 

  18. Krol JD, Grind WA van de (1980) The double-nail illusion: experiments on binocular vision with nails, needles, and pins. Perception 9:651–669

    CAS  PubMed  Google Scholar 

  19. Mallot HA, Bideau H (1990) Vergence eye movements influence the assignment of stereo correspondences. Vision Res 30:1521–1523

    Article  CAS  PubMed  Google Scholar 

  20. Mallot HA, Dartsch S, Arndt PA (1993) Human stereo vision does not always proceed from coarse to fine. Perception 22[Suppl]:112

    Google Scholar 

  21. Marr D, Hildreth, E (1980) Theory of edge detection. Proc R Soc Lond B Biol Sci 207:187–217

    CAS  PubMed  Google Scholar 

  22. Marr D, Poggio T (1979) A computational theory of human stereo vision. Proc R Soc Lond B Biol Sci 204:301–328

    CAS  PubMed  Google Scholar 

  23. Mayhew JEW, Frisby JP (1981) Psychophysical and computational studies towards a theory of human stereopsis. Artif Intell 17:349–385

    Article  Google Scholar 

  24. McKee SP, Mitchison GJ (1988) The role of retinal correspondence in stereoscopic matching. Vision Res 28:1001–1012

    Article  CAS  PubMed  Google Scholar 

  25. Mowforth P, Mayhew JEW, Frisby JP (1981) Vergence eye movements made in response to spatial-frequency-filtered random-dot stereograms. Perception 10:299–304

    CAS  PubMed  Google Scholar 

  26. Prazdny K (1985) Detection of binocular disparities. Biol Cybern 52:93–99

    Article  CAS  PubMed  Google Scholar 

  27. Rohaly AM, Wilson HR (1993) Nature of coarse-to-fine constraints on binocular fusion. J Opt Soc Am A 10:2433–2441

    CAS  Google Scholar 

  28. Schor CM, Wood I, Ogawa J (1984) Binocular sensory fusion is limited by spatial resolution. Vision Res 24:661–665

    CAS  PubMed  Google Scholar 

  29. Shimojo S, Nakayama K (1990) Real world occlusion constraints and binocular rivalry. Vision Res 30:69–80

    Article  CAS  PubMed  Google Scholar 

  30. Smallman HS, MacLeod DIA (1994) Size-disparity correlation in stereopsis at contrast threshold. J Opt Soc Am A 11:2169–2183

    CAS  Google Scholar 

  31. Snippe HP, Koenderink JJ (1993) Parameter estimation in channel-coded systems. Technical report UBI-T.93-MFF-017. Utrecht Biophysics Research Institute, Utrecht

    Google Scholar 

  32. Theimer W, Mallot HA (1994) Phase-based binocular vergence control and depth reconstruction using active vision. CVGIP: Image Understanding 60:343–358

    Article  Google Scholar 

  33. Tyler CW, Clarke MB (1990) The autostereogram. SPIE Stereoscopic Displays and Applications 1258:182–196

    Google Scholar 

  34. Ullman S (1979) The interpretation of visual motion. MIT Press, Cambridge, Mass

    Google Scholar 

  35. Watt RJ (1987) Scanning from coarse to fine spatial scales in the human visual system after the onset of a stimulus. J Opt Soc Am A 4:2006–2021

    CAS  PubMed  Google Scholar 

  36. Wilson HR, Blake R, Halpern DL (1991) Coarse spatial scales constrain the range of binocular fusion on fine scales. J Opt Soc Am A 8:229–236

    CAS  PubMed  Google Scholar 

  37. Wilson HR, McFarlane D, Phillips GC (1983) Spatial frequency tuning of orientation selective units estimated by oblique masking. Vision Res 23:873–882

    CAS  PubMed  Google Scholar 

  38. Witkin AP (1983) Scale-space filtering. In: Proceedings of the eighth international joint conference on artificial intelligence, Karlsruhe, Germany, pp 1019–1022

  39. Yang Y, Blake R (1991) Spatial frequency tuning of human stereopsis. Vision Res 31:1177–1189

    Article  CAS  PubMed  Google Scholar 

  40. Yuille AL, Poggio T (1986) Scaling theorems for zero crossings. IEEE Trans Pattern Analysis Machine Intell 8:15–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanspeter A. Mallot.

Additional information

For a review of matching primitives and feature-based stereo, see Arndt et al. (1995).

This article was processed by the author using the LATEX style file pljour2 from Springer-Verlag.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallot, H.A., Gillner, S. & Arndt, P.A. Is correspondence search in human stereo vision a coarse-to-fine process?. Biol. Cybern. 74, 95–106 (1996). https://doi.org/10.1007/BF00204198

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00204198

Keywords

Navigation