Skip to main content
Log in

Linear models for biological transducers and impulse train spectra: general formulation and review

  • Published:
Kybernetik Aims and scope Submit manuscript

Abstract

Starting with the assumption that the output of a biological transducer is the linear sum of discrete waveshapes, then under appropriate conditions, such a system may be modelled by a transfer function whose input is a train of delta functions. The transfer function is obtained by averaging over the population of possible waveshapes. The representation of the input as a train of delta functions facilitates the calculation of its frequency power spectrum. A number of examples of possible physiological interest are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adolph,A.R.: Spontaneous slow potential fluctuations in the Limulus photoreceptor. J. Gen. Physiol. 48, 297–327 (1964).

    Google Scholar 

  • Adolph,A.R.: Feedback in physiological systems: An application of feedback analysis and stochastic models to neurophysiology. Bull. Math. Biophys. 21, 195–216 (1959).

    Google Scholar 

  • Auerbach,A.A.: Transmitter release at chemical synapses. In Pappas,G.D., Purpura,D.P. (Ed.): Structure and Function of Synapses. New York: Raven Press 1972.

    Google Scholar 

  • Bar-David,I.: Statistics of nonstationary shot processes and the fluctuations of detected signals. Proc. IEEE (Letters) 56, 2167–2168 (1968).

    Google Scholar 

  • Bennett,M.V.L.: A comparison of electrically and chemically mediated transmission. In Pappas,G.D., Purpura,D.P. (Ed.): Structure and Function of Synapses. New York: Raven Press 1972.

    Google Scholar 

  • Biederman-Thorson,M.: Source mechanisms for unit activity in isolated crayfish central nervous system. J. Gen. Physiol. 49, 597–612 (1966).

    Google Scholar 

  • Biederman-Thorson,M., Thorson,J.: Dynamics of excitation and inhibition in the light-adapted Limulus eye in situ. J. Gen. Physiol. 58, 1–19 (1971).

    Google Scholar 

  • Braitenberg,V., Gambardella,G., Ghigo,G., Vota,O.: Observations on spike sequences from spontaneously active Purkinje cells in the frog. Kybernetik 2, 197–205 (1965).

    Google Scholar 

  • Buchthal,F.: The general concept of the motor unit. Neuromuscular Disorders 34, 3–30 (1961).

    Google Scholar 

  • Bullock,T.H., Hamstra,R.H., Scheich,H.: The jamming avoidance response of high frequency electric fish. I. General features. J. Comp. Physiol. 77, 1–22 (1972).

    Google Scholar 

  • Clamann,H.P.: Statistical analysis of motor unit firing patterns in a human skeletal muscle. Biophys. J. 9, 1233–1251 (1969).

    Google Scholar 

  • Coggshall,J.C., Bekey,G.A.: A stochastic model of skeletal muscle based on motor unit properties. Math. Biosci. 7, 405–419 (1970).

    Google Scholar 

  • Cox,D.R.: The statistical analysis of dependence in point processes. Stochastic Point Processes: Statistical Analysis, Theory and Applications 55–66 (1972).

  • Cox,D.R., Lewis,P.A.W.: The statistical analysis of series of events. New York: John Wiley & Sons. Inc. 1966.

    Google Scholar 

  • Cox,D.R., Miller,H.D.: The theory of stochastic processes. New York: John Wiley and Sons. Inc. 1965.

    Google Scholar 

  • Dodge,F.A., Knight,B.W., Toyoda,J.: Voltage noise in Limulus visual cells. Science 160, 88–90 (1968).

    Google Scholar 

  • Dodge,F.A., Shapley,R.M., Knight,B.W.: Linear systems analysis of the Limulus retina. Behavioral Sci. 15, 24–36 (1970).

    Google Scholar 

  • Domb,C.: The statistics of correlated events. Phil. Mag. 41, 969–982 (1950).

    Google Scholar 

  • Firth,D.R.: Interspike interval fluctuations in the crayfish stretch receptor. Biophys. J. 6, 201–215 (1966).

    Google Scholar 

  • French,A.S., Holden,A.V.: Alias-free sampling of neuronal spike trains. Kybernetik 9, 165–171 (1971).

    Google Scholar 

  • Fuortes,M.G.F.: Generation of responses in receptor. Handbook of Sensory Physiology. Vol. 1, Principles of Receptor Physiology (Ed. W. R. Loewenstein). 241–268. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

  • Fuortes,M.G.F., Yeandle,S.: Probability of occurrence of discrete potential waves in the eye of Limulus. J. Gen. Physiol. 47, 443–464 (1964).

    Google Scholar 

  • Gerstein,G.L., Kiang,N.Y.-S.: An approach to the quantitative analysis of electrophysiological data from single neurons. Biophys. J. 1, 15–28 (1960).

    Google Scholar 

  • Gestri,G.: Autocorrelation and spectrum of the modulated retinal discharge. A comparison of theoretical and experimental results. Kybernetik 11, 77–85 (1972).

    Google Scholar 

  • Gilbert,E.N., Pollak,H.O.: Amplitude distribution of shot noise. Bell System Tech. J. 39, 333–344 (1960).

    Google Scholar 

  • Hengstenberg,R.: Das Augenmuskelsystem der Stubenfliege Musca domestica. I. Analyse der “clock-spikes” und ihrer Quellen. Kybernetik 2, 56–77 (1971).

    Google Scholar 

  • Herz,A., Creutzfeldt,O., Fuster,J.: Statistische Eigenschaften der Neuronaktivität im ascendierenden visuellen System. Kybernetik 2, 61–71 (1964).

    Google Scholar 

  • Junge,D., Moore,G.P.: Interspike-interval fluctuations in Aplysia pacemaker neurons. Biophys. J. 6, 411–434 (1966).

    Google Scholar 

  • Kaissling,K.-E.: Insect olfaction. Handbook of Sensory Physiology 4, 351–431. Berlin-Heidelberg-New York: Springer 1971.

  • Katz,B.: Nerve, muscle, and synapse. New York: McGraw Hill 1966.

    Google Scholar 

  • Khinchin,A.I.: Mathematical methods on the theory of queuing. Kingston upon Thames: Hafner Publ. Co. 1960.

    Google Scholar 

  • Kirschfeld,K.: Discrete and graded receptor potentials in the compound eye of the fly (Musca). In Bernard,C.G. (Ed.): The Functional Organization of the Compound Eye. Oxford: Pergamon Press, 1966.

    Google Scholar 

  • Knight,B.W.: Some point processes in motor and sensory neurophysiology. Stochastic Point Processes: Statistical Analysis, Theory, and Applications, 732–755. New York: John Wiley & Sons, Inc. Interscience 1972.

    Google Scholar 

  • Kuffler,S.W., Fitzhugh,R., Barlow,H.B.: Maintained activity in the cat's retina in light and darkness. J. Gen. Physiol. 40, 683–702 (1957).

    Google Scholar 

  • Kuno,M.: Quantum aspects of central and ganglionic synaptic transmission in vertebrates. Physio. Rev. 51, 647–684 (1971).

    Google Scholar 

  • Lawson,J.L., Ohlenbeck,G.: Threshold signals. Radiation Laboratory Series Vol. 24. New York: McGraw Hill 1950.

    Google Scholar 

  • Lee,Y.W.: Statistical theory of communication. New York: John Wiley & Sons, Inc. 1960.

    Google Scholar 

  • Levitan,H., Segundo,J.P., Moore,G.P., Perkel,D.H.: Statistical analysis of membrane potential fluctuations, relation with presynaptic spike train. Biophys. J. 8, 1256–1274 (1964).

    Google Scholar 

  • Lewis,P.A.W.: Remarks on the theory, computation, and application of the spectral analysis of series of events. J. Sound Vib. 12, 353–375 (1970).

    Google Scholar 

  • Lewis,P.A.W.: Recent results in the statistical analysis of univariate point processes. Stochastic Point Processes: Statistical Analysis, Theory, and Applications. 1–54. New York: Wiley-Interscience 1972.

    Google Scholar 

  • Lighthill,M.J.: Fourier analysis and generalized functions. Cambridge: Cambridge Univ. Press 1964.

    Google Scholar 

  • Lin,Y.K.: Nonstationary excitation and response in linear systems treated as sequences of random pulses. J. Acoust. Soc. Am. 38, 453–460 (1965).

    Google Scholar 

  • Manetsch,T.J.: Transfer function representation of the aggregate behavior of a class of economic processes. IEEE Trans. Auto. Contr., AC-11, 693–698 (1966).

    Google Scholar 

  • Martin,A.R.: Quantal nature of synaptic transmission. Physiol. Rev. 46, 51–66 (1966).

    Google Scholar 

  • Matthews,P.B.C., Stein,R.B.: The regularity of primary and secondary muscle spindle afferent discharges. J. Physiol. 202, 59–82 (1969).

    Google Scholar 

  • McFadden,J.A.: On the lengths of intervals in a stationary point process. J. Roy. Stat. Soc. B 24, 364–382 (1962).

    Google Scholar 

  • McKean,T.A., Poppele,R.E., Rosenthal,N.P., Terzuolo,C.A.: The biologically relevant parameter in nerve impulse trains. Kybernetik 6, 168–170 (1970).

    Google Scholar 

  • Moore,G.P., Perkel,D.H., Segundo,J.P.: Statistical analysis and functional interpretation of neuronal spike data. Ann. Rev. Physio. 28, 493–522 (1966).

    Google Scholar 

  • Nelsen,D.E.: Calculation of power density spectra for a class of randomly jittered waveforms. Quarterly Progress Report. 74, 168–179. MIT Research Lab. of Electronics. Cambridge, Mass. 1964.

  • Partridge,L.D.: Modifications of neural output signals by muscles: A frequency response study. J. Appl. Physiol. 20, 150–156 (1965).

    Google Scholar 

  • Parzen,E.: Stochastic processes, p. 175. San Francisco: Holden-Day, Inc. 1962.

    Google Scholar 

  • Perkel,D.H.: Spike trains as carriers of information. In: The Neurosciences: A Second Study Program. F.O. Schmitt, Ed. New York: Rockefeller Univ. Press 1970.

    Google Scholar 

  • Perkel,D.H., Gerstein,G.L., Moore,G.P.: Neuronal spike trains and stochastic point processes. I. The single spike train. Biophys. J. 7, 391–418 (1967).

    Google Scholar 

  • Pinter,R.B.: Sinusoidal and delta function responses of visual cells at the Limulus eye. J. Gen. Physiol. 49, 565–593 (1965).

    Google Scholar 

  • Pinter,R.B.: Frequency and time domain properties of retinular cells of the desert locust (Schistocerca gregaria) and the house cricket (Acheta domesticus). J. Comp. Physiol. 77, 383–397 (1972).

    Google Scholar 

  • Rice,S.O.: Mathematical analysis of random noise. In: Selected Papers on Noise and Stochastic Processes (Nelson Wax, Ed). New York: Dover Publ. Inc. 1954.

    Google Scholar 

  • Rodieck,R.W.: Maintained activity of cat retinal ganglion cells. J. Neurophysiol. 30, 1043–1071 (1967).

    Google Scholar 

  • Rodieck,R.W., Kiang,N.Y., Gerstein,G.L.: Some quantitative methods for the study of spontaneous activity of single neurons. Biophys. J. 2, 351–368 (1962).

    Google Scholar 

  • Soucek,B.: Influence of the latency fluctuations and the quantal process of transmitter release on the end-plate potentials amplitude distribution. Biophys. J. 11, 127–139 (1971).

    Google Scholar 

  • Srinivasan,S.K., Subramanian,R., Kumaraswamy,S.: Response of linear vibratory systems to non-stationary stochastic impulses. J. Sound Vib. 6, 169–179 (1967).

    Google Scholar 

  • Stein,R.B.: A theoretical analysis of neuronal variability. Biophys. J. 5, 173–194 (1965).

    Google Scholar 

  • Stein,R.B.: The stochastic properties of spike trains recorded from nerve cells. Stochastic Point Processes: Statistical Analysis, Theory, and Application, 700–731. New York: Wiley-Interscience 1972.

    Google Scholar 

  • Stratonovich,R.L.: Topics in the theory of random noise. Vol. 1. New York: Gordon and Beach 1963.

    Google Scholar 

  • Tauc,L.: Transmission in invertebrate and vertebrate ganglia. Physiol. Rev. 47, 521–593 (1967).

    Google Scholar 

  • Terzuolo,C.A., Bayly,E.J.: Data transmission between neurons. Kybernetik 5, 83–85 (1968).

    Google Scholar 

  • Williams, W.J.: Biocybernetic aspects of latency dispersion in peripheral nerve bundles. Proc. IEEE Sys. Sci. Cyber. Conf. 135–139 (1968).

  • Zettler,F.: Die Abhängigkeit des Übertragungsverhaltens von Frequenz und Adaptationszustand; gemessen am einzelnen Lichtrezeptor von Calliphora erythrocephala. Z. vergl. Physiol. 64, 432–449 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coggshall, J.C. Linear models for biological transducers and impulse train spectra: general formulation and review. Kybernetik 13, 30–37 (1973). https://doi.org/10.1007/BF00289108

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00289108

Keywords

Navigation