Skip to main content
Log in

Micro-mechanics and continuum damage mechanics

  • Review Article
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Summary

Continuum Damage Mechanics has been applied successfully to technical problems since the idea was introduced by Kachanov almost 40 years ago. In keeping with the traditions of mechanics, the formulation was based on the results of mechanical tests on specimens whose size is measured in centimeters. To model the observations which describe the deterioration of material properties it was found necessary to introduce internal variables referred to as ‘damage’. The approach is phenomenological, with only a minimal attempt to provide a physical interpretation of damage. For this reason the approach has had little appeal to those whose interest is in the physical mechanisms which cause material deterioration. In this presentation a description is given of attempts to develop continuum damage mechanics so that the relationship with the physical mechanism approach is less abrupt. The procedure is illustrated with reference to ceramic matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kachanov, L. M.: Time of the rupture process under creep conditions. Izv. Akad. Nauk. S.R.S. Odt. Tekh. Nauk. 8 (1958) 26–31

    Google Scholar 

  2. Krajcinovic, D.: Damage mechanics. Mech. Mat. 8 (1989) 117–197

    Google Scholar 

  3. Lemaitre, J.: A course on damage mechanics. Berlin: Springer 1992

    Google Scholar 

  4. Rabotnov, Y. N.: On the equation of state for creep. In Koiter, W. T. (ed) Prager Anniversary Vol. (1963) pp. 307–315, McMillan

  5. Lemaitre, J.: How to use damage mechanics. Nucl. Eng. Design 80 (1984) 233–245

    Google Scholar 

  6. Amar, G.;Dufailly, J.: Identification and validation of viscoplastic and damage constitutive equations. Eur. J. Mech. A/Solids 12 (1993) 197–218

    Google Scholar 

  7. Lemaitre, J.;Dufailly, J.: Damage measurements. Eng. Fract. Mech. 28 (1987) 643–661

    Google Scholar 

  8. Mazars, J.: Application de la mécanique de l'endommagement au comportement non linéaire et à la rupture du béton de structure. Thèse d'état, 1984

  9. Ashby, M. F.; Dyson, B. F.: Creep damage mechanics and micromechanisms. Natl. Phys. Lab. UK 77, 1984

  10. Cocks, A. C. F.;Leckie, F. A.: Creep constitutive equations for damaged materials. Adv. Appl. Mech. 25 (1987) 239–294

    Google Scholar 

  11. Hall, F. R.;Hayhurst, D. R.: Continuum damage mechanics modeling of high temperature deformation and failure in a pipe weldment. Proc. R. Soc. London/A Vol. 433 (1991) 383–403

    Google Scholar 

  12. Evans, A. G.: Perspectives on the development of high-thoughness ceramics. J. Am. Ceram. Soc. 73 (1990) 187–206

    Google Scholar 

  13. Rice, J. R.: Inelastic constitutive relations for solids: An internal variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19 (1971) 433–455

    Google Scholar 

  14. Bataille, J.;Kestin, J.: Irreversible processes and physical interpretations of rational thermodynamics. J. Non Equil. Thermodynamics 4 (1979) 229–258

    Google Scholar 

  15. Germain, P.;Nguyen, Q. S.;Suquet, P.: Continuum thermodynamics. Trans. ASME/J. Appl. Mech. 50 (1983) 1010–1020

    Google Scholar 

  16. Volterra, V.: Sur l'équilibre des corps élastiques multiplement connexes. Annales Scientifiques Ecole Normale Supérieure 24 (1907) 401–518

    Google Scholar 

  17. Love, A. E. H.: The mathematical theory of elasticity. Cambridge: Cambridge University Press 1927

    Google Scholar 

  18. Eshelby, J. D.: The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. London/A 241 (1957) 376–396

    Google Scholar 

  19. Lemaitre, J.;Marquis, D.: Modeling complex behavior of metals by the ‘State-Kinetic Coupling Theory’. J. Eng. Mat. Tech. 114 (1992) 250–254

    Google Scholar 

  20. Budiansky, B.: Thermal and thermoelastic properties of isotropic composites. J. Comp. Mater. 4 (1970) 286

    Google Scholar 

  21. Budiansky, B.;O'Connell, R. J.: Elastic moduli of a cracked system. Int. J. Solids Struct. 12 (1976) 81–97

    Google Scholar 

  22. Lemaitre, J.;Chaboche, J.-L.: Aspect phénoménologique de la rupture par endommagement. J. Mec. Appl. 2 (1978) 317–365

    Google Scholar 

  23. Lemaitre, J.: Sur la détermination des lois de comportement des matériaux élasto-viscoplastiques. Thèse de doctorat d'état, 1971

  24. Chaboche, J.-L.: Description thermodynamique et phénoménologique de la viscoplasticité cyclique avec endommagement. Thèse d'état, 1978

  25. Ladevèze, P.: Sur une théorie de l'endommagement anisotrope. LMT Cachan Report N. 34, 1983

  26. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13 (1965) 213–222

    Google Scholar 

  27. Stolz, C.;Zaoui, A.: Combined variational approach and morphological analysis to the behavior of inhomogeneous elastic media. C. R. Acad. Sci. Paris 312 Série II (1991) 143–150

    Google Scholar 

  28. Christensen, R. M.;Lo, K. H.: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27 (1979) 315–330

    Google Scholar 

  29. Christensen, R. M.;Lo, K. H.: Solutions for effective shear properties in three phase sphere and cylinder models (erratum). J. Mech. Phys. Solids 34 (1986) 639

    Google Scholar 

  30. Pijaudier-Cabot, G.;Bazant, Z. P.: Nonlocal damage theory. J. Eng. Mech. 113 (1987) 1512–1533

    Google Scholar 

  31. Pijaudier-Cabot, G.;Berthaud, Y.: Damage and interactions in a microcracked medium. Non-local formulation. C. R. Acad. Sci. Paris 310 Série II (1990) 1577–1582

    Google Scholar 

  32. Onat, E. T.;Leckie, F. A.: Representation of mechanical behavior in the presence of changing internal structure. Trans. ASME/J. Appl. Mech. 55 (1988) 1–10

    Google Scholar 

  33. Onat, E. T.: Effective properties of elastic materials that contain penny-shaped voids. Int. J. Eng. Sci. 22 (1984) 1013–1021

    Google Scholar 

  34. Leckie, F. A.; Onat, E. T.: Tensorial nature of damage measuring internal variables. In: Hult, J.; Lemaitre, J. (eds.) Proc. IUTAM Symp. on Physical Nonlinearities in Structures, pp. 140–155. Springer: 1980

  35. Evans, A. G.;Marshall, D. B.: The mechanical behavior of ceramic matrix composites. Acta Metall. 37 (1989) 2567–2583

    Google Scholar 

  36. Cady, C. M.;Makin, T. J.;Evans, A. G.: J. Am. Ceram. Soc. Silicon Carbide Calcium Aluminosilicate-A Notch-Insensitive Ceramic-Matrix Composite, Vol. 18, No. 1, 77–82, 1995

    Google Scholar 

  37. Hutchinson, J. W.;Jensen, H. M.: Models for fiber debonding and fiber pullout in brittle composites with friction. Mech. Mat. 41 (1990) 2365

    Google Scholar 

  38. Evans, A. G.;Domergue, J.-M.;Vagaggini, E.: Methodology for relating the tensile constitutive behavior of ceramic matrix composites to constituent properties. J. Am. Ceram. Soc. 77 (1994) 1425–1435

    Google Scholar 

  39. Allix, O.; Gilletta, D.; Ladeveze, P.: Mechanical behavior of elementary constituents of laminates. Proc. 5th Int. Conf. on Composites Materials (1985) pp. 1039–1057

  40. Jansson, S.;Leckie, F. A.: The mechanics of failure of silicon carbide fiber-reinforced glass-matrix composites. Acta Metall. 40 (1993) 2967–2978

    Google Scholar 

  41. Zienkievicz, O. C.;Taylor, R. L.: The finite element method. London: McGraw-Hill 1989

    Google Scholar 

  42. Hibbitt, H. D.; Karlsson, B. I.; Sorensen, P.: Abaqus, version 5.3, 1993

  43. Chaboche, J.-L.: Le concept de contrainte effective appliquée à l'élasticité et à la viscoplasticité en présence d'un endommagement anisotrope. Colloq. Int. CNRS 295 (1982) 31–43

    Google Scholar 

  44. Hild, F.; Burr, A.; Leckie, F. A.: Matrix cracking and debonding in ceramic-matrix composites, accepted for publication in Int. J. Solids Struct.

  45. Burr, A.; Hild, F.; Leckie, F. A.: Continuum description of damage in ceramic-matrix composites. University of California, Santa Barbara, U.R.I. Report, 1995

  46. Pluvinage, P.: Etude expérimentale et simulation numérique du comportement mécanique de matériaux composites SiC/SiC. Influence des paramètres de stratification et d'élaboration. Thèse d'Université, 1991

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Defence Advanced Research Project Agency through the University Research Initiative under Office of Naval Research Contract No. N-00014-92-J-1808.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burr, A., Hild, F. & Leckie, F.A. Micro-mechanics and continuum damage mechanics. Arch. Appl. Mech. 65, 437–456 (1995). https://doi.org/10.1007/BF00835656

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00835656

Key words

Navigation