Skip to main content
Log in

An improved method to investigate staining kinetics in single cells

  • Published:
Histochemistry Aims and scope Submit manuscript

Summary

A new method to analyze staining processes in single cells of histochemical and cytochemical specimens in situ is described. The combination of a microscope photometer with a perfusion cuvette developed in our laboratory allows the continuous observation of a cell during the staining process. The flow rate dependence of the staining process has been examined demonstrating the strong suppression of the diffusional boundary layer adjacent to the cell surface by sufficiently high flow rates. Experiments to find optimal conditions for the kinetic analysis of the staining reaction of nuclei in lymphocytes, neutrophile granulocytes and monkey kidney cells with thionin are described. Half-staining times of the binding of monomer dye molecules and aggregates to nuclei have been calculated; they depend on the pretreatment of the cells. The addition of electrolytes decreases the rate of staining. The formation of aggregates obeys approximately a first-order reaction law and the binding of monomers provides an order of reaction of n=0.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreoni A, Cubeddu R, De Silvestri S, Laporta P, Svelto O (1980) Time-delayed two-step selective laser photodamage of dye-biomolecule complexes. Phys Rev Lett 45:431–434

    Google Scholar 

  • Bennion PJ, Horobin RW (1974) Some effects of salts on staining: use of the Donman Equilibrium to describe staining of tissue sections with acid and basic dyes. Histochemistry 39:71–82

    Google Scholar 

  • Benson DG (1966) Azure A-schiff, Alcian blue, periodic acid-schiff, naphthol yellow S — a sequential staining method for paraffin acctions Stain Technol 41:155–158

    Google Scholar 

  • Bresloff J, Crothers DM (1975) DNA — ethidium reaction kinetics: demonstration, of direct ligand transfer between DNA binding sites. J Mol Biol 95:103–123

    Google Scholar 

  • Deitch AD (1964) A method for the cytophotometric estimation of nucleic acids using methylene blue. J Histochem Cytochem 12:451–461

    Google Scholar 

  • Dourlent M, Hogrel JF (1976) Influence of electric dichroism on the temperature-jump relaxation study of proflavine-DNA complexes. Biochemistry 15:430–436

    Google Scholar 

  • Duijndam WAL, Hermans J, Van Duijn P (1973a) A new method to distinguish separate components in cytochemically stained macromolecules by analysis of the kinetics of the staining and destaining processes. J Histochem Cytochem 21:723–728

    Google Scholar 

  • Duijndam WAL, Hermans J, van Duijn P (1973b) Application of the method of kinetic analysis of staining and destaining processes to the complex formed between hydrolyzed deoxyribonucleoprotein and Schiff's reagent in model films. J Histochem Cytochem 21:729–736

    Google Scholar 

  • Dvorak JA, Stotler WF (1971) A controlled-environment culture system for high resolution light microscopy. Exp Cell Res 68:144–148

    Google Scholar 

  • goldstein DJ (1980) A microdensitometric method for the analysis of staining kinetics. J Microsc 119:331–343

    Google Scholar 

  • Green FJ (1978) A status report on biological stains. Aldrichim Acta 11:3–6

    Google Scholar 

  • Horobin RW (1980) Structure-staining relationships in histochemistry and biological staining. J Microsc 119:345–355

    Google Scholar 

  • Horobin RW, Goldstein DJ (1974) The influence of salt on the staining of tissue sections with basic dyes: an investigation into the general applicability of the eritical electrolyte concentration theory. Histochem J 6:599–609

    Google Scholar 

  • Iyer SSR (1974) Physical chemistry of dyeing: kinetics, equilibrium, dye-fiber affinity, and mechanisms. Chap. 4.. In: Venkataraman K (ed) The chemistry of synthetic dyes, vol 7. Academic Press, New York San Francisco London, pp 115–275

    Google Scholar 

  • Laidler KJ (1963) Reaction kinetics. I. Pergamon Press, Oxford London New York Paris, pp 16–20

    Google Scholar 

  • Levich VG (1962) Physicochemical hydrodynamics. Prentice-Hall, Englewood Cliffs. New Jersey, pp 39–60

    Google Scholar 

  • Li HJ, Crothers DM (1969) Relaxation studies of the proflavine-DNA complex: the kinetics of an intercalation reaction. J Mol Biol 39:461–477

    Google Scholar 

  • Löhr W, Wittekind D (1973) Vitalfärbung mit Derivaten des Phenothiazins. Z Zellforsch 137:125–140

    Google Scholar 

  • Magde D, Elson E, Webb W (1974) Fluorescence correlations spectroscopy. II. An experimental realization. Biopolymers 13:29–61

    Google Scholar 

  • Marcandalli B, Winzek C, Holzwarth JF (1984) A laser temperature jump investigation of the interaction between proflavine and calf-thymus deoxyribonucleic acid at low and high ionic strength avoiding electric field effects. Ber Bunsenges Phys Chem 88:368–374

    Google Scholar 

  • Marshall PN, Horobin RW (1973) The influence of inorganic salts when staining with preformed metal complex dyes. Histochemic 37:299–311

    Google Scholar 

  • Marshall PN, Lewis SM (1975) Metal contaminants in commercial thiazine dyes. Stain Technol 50:143–147

    Google Scholar 

  • Menzies DW (1966) Staining of small lymphoid nucleoli in paraffin sections by aniline-azure B. Stain Technol 41:165–167

    Google Scholar 

  • Mowry RW, Kasten HF (1975) The importance of dye purification and standardization in biomedicine. Stain Technol 50:65–81

    Google Scholar 

  • Müller W, Crothers DM, Waring M (1973) A non-intercalating proflavine derivative. Eur J Biochem 39:223–234

    Google Scholar 

  • Nothelfer R (1986) Thionin — ein Strukturindikator für Biopolymere in Lösung und gefärbten Zellen. Dissertation, Freie Universität Berlin

  • Piller H (1977) Microscope photometry. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Poyton RO, Branton D (1970) A multipurpose microperfusion chamber. Exp Cell Res 60:109–114

    Google Scholar 

  • Rattee ID, Breuer MM (1974) Kinetics, of dyeing, Chap. 3. In: The physical chemstry of dye adsorption. Academic Press, London New York, pp 47–115

    Google Scholar 

  • Ruprecht J (1981) Umtersuchungen zum Bindungsverhalten von Phenthiazinfarbstoffen an Biopolymeren — Ein Modell für die histologische Färbung. Dissertation, Freie Universität Berlin

  • Schürmann R (1986) Bedingungen und Ursachen der metachromatischen Kernfärbung mit Phenthiazinen— eine quantitative mikrospektroskopische Untersuchung an Leukozyten. Dissertation, Freie Universität Berlin

  • Störmer U, Baumgärtel H (1986) Die wasserinduzierte Metachromasie von Thionin und Methylenblau in histologischen Präparaten. Acta Histochem 79:127–134

    Google Scholar 

  • Störmer U, Schmidt R, Ruprecht J, Störmer P (1982) Über das Färbeverhalten und die Anwendbarkeit von spektralreinem Thionin und seiner Isomere in der Histologie. Acta Histochem 70:161–172

    Google Scholar 

  • Toepfer K (1971) Die Standardisierung von Thiazinfarbstoffen. Acta Histochem [Suppl] 10:215–223

    Google Scholar 

  • Wittekind D, Kretschmer V, Löhr W (1976) Kann Azur B-Eosin die May-Grünwald-Giemsa-Färbung ersetzen? Blut 32:71–78

    Google Scholar 

  • Zimmermann U, Schmidt R, Gantert S, Lange A, Ruprecht J, Plieninger P (1983) Über das Färbeverhalten und die Anwendbarkeit von spektralreinem Capriblau GN, Stella Blue, Oxonin und Punky Blue. Acta Histochem 72:55–69

    Google Scholar 

  • Zipfel E, Grezes JR, Seiffert W, Zimmermann HW (1981) Über Romanowsky-Farbstoffe und den Romanowsky-Giemsa-Effekt. Histochemistry 72:279–290

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Winzek, C., Plieninger, P. & Baumgärtel, H. An improved method to investigate staining kinetics in single cells. Histochemistry 86, 421–426 (1987). https://doi.org/10.1007/BF00495004

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00495004

Keywords

Navigation