Skip to main content
Log in

Phosphorylation dependence of the initiation of productive transcription of balbiani ring 2 genes in living cells

  • Original Papers
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Using polytene chromosomes of salivary gland cells of Chironomus tentans, phosphorylation state-sensitive antibodies and the transcription and protein kinase inhibitor 5,6-dichloro-1-β-d-ribofuranosyl-benzimidazole (DRB), we have visualized the chromosomal distribution of RNA polymerase II (pol II) with hypophosphorylated (pol IIA) and hyperphosphorylated (pol IIO) carboxyl-terminal repeat domain (CTD). DRB blocks labeling of the CTD with 32Pi within minutes of its addition, and nuclear pol IIO is gradually converted to IIA; this conversion parallels the reduction in transcription of protein-coding genes. DRB also alters the chromosomal distribution of IIO: there is a time-dependent clearance from chromosomes of phosphoCTD (PCTD) after addition of DRB, which coincides in time with the completion and release of preinitiated transcripts. Furthermore, the staining of smaller transcription units is abolished before that of larger ones. The staining pattern of chromosomes with anti-CTD antibodies is not detectably influenced by the DRB treatment, indicating that hypophosphorylated pol IIA is unaffected by the transcription inhibitor. Microinjection of synthetic heptapeptide repeats, anti-CTD and anti-PCTD antibodies into salivary gland nuclei hampered the transcription of BR2 genes, indicating the requirement for CTD and PCTD in transcription in living cells. The results demonstrate that in vivo the protein kinase effector DRB shows parallel effects on an early step in gene transcription and the process of pol II hyperphosphorylation. Our observations are consistent with the proposal that the initiation of productive RNA synthesis is CTD-phosphorylation dependent and also with the idea that the gradual dephosphorylation of transcribing pol IIO is coupled to the completion of nascent pol II gene transcripts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allison LA, Wong JK, Fitzpatrick VD, Moyle M, Ingles CJ (1988) The C-terminal domain of the largest subunit of RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: a concerved structure with an essential function. Mol Cell Biol 8: 321–329

    Google Scholar 

  • Bartholomew B, Dahmus ME, Meares CF (1986) RNA contacts subunits IIo and IIc in HeLa RNA polymerase II transcription complexes J Biol Chem 261: 14226–14231

    Google Scholar 

  • Beermann W (1952) Chromomerenkostanz und spezifische Modifikation der Kromosomenstruktur in der Entwicklung und Organdifferenzierung con Chironomus tentans. Chromosoma 5: 139–198

    Google Scholar 

  • Braddock M, Thorburn AM, Kingsman AJ, Kingsman SM (1991) Blocking of Tat-dependent HIV-1 RNA modification by an inhibitor of RNA polymerase II processivity. Nature 350: 439–441

    Google Scholar 

  • Breant B, Buhler JM, Sentenac A, Fromageot P (1983) On the phosphorylation of yeast RNA polymerases A and B. Eur J Biochem 130: 247–251

    Google Scholar 

  • Buermeyer AB, Thompson NE, Strasheim LA, Burgess RR, Farnham PJ (1992) The HIP1 initiator element plays a role in determining the in vitro requirement of the dihydrofolate reductase gene promoter for the C-terminal domain of RNA polymerase II. Mol Cell Biol 12: 2250–2259

    Google Scholar 

  • Buratowski S, Sharp PA (1990) Transcription initiation complexes and upstream activation with RNA polymerase II lacking the C-terminal domain of the largest subunit. Mol Cell Biol 10: 5562–5564

    Google Scholar 

  • Cadena DL, Dahmus ME (1987) Messenger RNA synthesis in mammalian cells is catalyzed by the phosphorylated form of RNA polymerase II. J Biol Chem 262: 12468–12474

    Google Scholar 

  • Chesnut JD, Stephens JH, Dahmus ME (1992) The interaction of RNA polymerase II with the adenovirus-2 major late promoter is precluded by phosphorylation of the C-terminal domain of subunit IIa. J Biol Chem 267: 10500–10506

    Google Scholar 

  • Chodosh LA, Fire A, Samuels M, Sharp PA (1989) 5,6-Dichloro-1-β-d-ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro. J Biol Chem 264: 2250–2257

    Google Scholar 

  • Corden JL (1990) Tails of RNA polymerase II. Trends Biochem Sci 15: 383–387

    Google Scholar 

  • Dahmus ME (1981) Phosphorylation of eukaryotic DNA-dependent RNA polymerase. Identification of calf thymus RNA polymerase subunits phosphorylated by two purified protein kinases, correlation with in vivo sites of phosphorylation in HeLa cell RNA polymerase II. J Biol Chem 256: 3332–3339

    Google Scholar 

  • Dahmus ME, Dynan WS (1992) Phosphorylation of RNA polymerase II as a transcriptional regulatory mechanism. In Yamamoto K, McKnight S (eds) Transcriptional regulation, vol 1. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 109–129

    Google Scholar 

  • Daneholt B (1972) Giant RNA transcript in a Balbiani ring. Nature New Biol 240: 229–232

    Google Scholar 

  • Dubois M-F, Nguyen VT, Bellier S, Bensuade O (1994) Inhibitors of transcription such as 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole and isoquinoline sulfonamide derivates (H-8 and H-7*) promote dephosphorylation of the carboxyl-terminal domain of RNA polymerase II largest subunit. J Biol Chem 269: 13331–13336

    Google Scholar 

  • Dvir A, Stein LY, Calore BL Dynan WS (1993) Puritication and characterization of a template-associated protein kinase that phosphorylates RNA polymerase II. J Biol Chem 268: 10440–10447

    Google Scholar 

  • Edström JE (1964) Microextraction and microelectrophoresis for determination and analysis of nucleic acids in isolated cellular units. Methods Cell Physiol 1: 417–447

    Google Scholar 

  • Egyházi E (1974) A tentative initiation inhibitor of chromosomal heterogeneous RNA synthesis. J Mol Biol 84: 173–183

    Google Scholar 

  • Egyházi E (1975) Inhibition of Balbiani ring RNA synthesis at the initiation level. Proc Natl Acad Sci USA 72: 947–950

    Google Scholar 

  • Egyházi E (1976a) Initiation inhibition and reinitiation of the synthesis of heterogenous nuclear RNA in living cells. Nature 262: 319–321

    Google Scholar 

  • Egyházi E (1976b) Quantitation of turnover and export to the cytoplasm of hnRNA transcribed in the Baldiani rings. Cell 7: 507–515

    Google Scholar 

  • Egyházi E, Pigon A (1986) Selective repression of RNA polymerase II by microinjected phosvitin. Chromosoma 94: 329–336

    Google Scholar 

  • Egyházi E, Daneholt B, Edström JE, Lambert B, Ringborg U (1970) Differential inhibitory effect of a substituted benzimidazole on RNA labeling in polytene chromosomes. J Cell Biol 47: 516–520

    Google Scholar 

  • Egyházi E, D'Monte B, Edström JE (1972) Effects of α-amanitin on in vitro labeling of RNA from defined nuclear components in salivary gland cells from Chironomus tentans. J Cell Biol 53: 523–531

    Google Scholar 

  • Egyházi E, Pigon A, Rydlander L (1982) 5,6-Dichlororibofuranosylbenzimidazole inhibits the rate of transcription initiation in intact Chironomus cells. Eur J Biochem 122: 445–451

    Google Scholar 

  • Egyházi E, Pigon A, Ossoinak A, Holst M, Tayip U (1984) Phosphorylation of some chromosomal nonhistone proteins in active genes in blocked by the transcription inhibitor 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB). J Cell Biol 98: 954–962

    Google Scholar 

  • Feaver WJ, Svejstrup JQ, Henry NL, Kornberg RD (1994) Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79: 1103–1109

    Google Scholar 

  • Fraser NW, Sehgal PB, Darnell JE (1978) DRB-induced premature termination of late adenovirus transcription. Nature 272: 590–593

    Google Scholar 

  • Giardina C, Perez RM, Lis JT (1992) Promoter melting and TFIID complexes on Drosophila genes in vivo. Genes Dev 6: 2190–2200

    Google Scholar 

  • Gileadi O, Feaver WJ, Kornberg RD (1992) Cloning of a subunit of yeast RNA polymerase II transcription factor b and CTD kinase. Science 257: 1389–1392

    Google Scholar 

  • Greenleaf AL (1993) Positive patches and negative noodles linking RNA processing to transcription? Trends Biochem Sci 18:117–119

    Google Scholar 

  • Hermann CH, Rice AP (1995) Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor. J Virol 69:1612–1620

    Google Scholar 

  • Kephart DD, Marshall NF, Price DH (1992) Stability of Drosophila DNA polymerase II elongation complexes in vitro. Mol Cell Biol 12:2067–2077

    Google Scholar 

  • Kim WY, Dahmus ME (1989) The major late promoter of adenovirus-2 is accurately transcribed by RNA polymerase IIO, IIA, and IIB. J Biol Chem 264:3169–3176

    Google Scholar 

  • Kim YJ, Bjorklund S, Li Y, Sayre MH Kornberg RD (1994) A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608

    Google Scholar 

  • Koleske AJ, Young RA, (1994) An RNA polymerase II holoenzyme responsive to activators. Nature 368:466–469

    Google Scholar 

  • Lambert B, Daneholt, B (1975) Microanalysis of RNA from defined cellular components. Methods Cell Biol 10:17–47

    Google Scholar 

  • Laub O, Jakobovits EB, Aloni Y (1980) 5,6-dichloro-1-β-ribofuranosylbenzimidazole enhances premature termination of late transcription of simian virus 40 DNA. Proc Natl Acad Sci USA 77:3297–3301

    Google Scholar 

  • Lee JM, Greenleaf AL (1989) A protein kinase that phosphorylates the C-terminal repeat domain of the largest subunit of RNA polymerase II. Proc Natl Acad Sci USA 86:3624–3628

    Google Scholar 

  • Lee JM, Greenleaf AL (1991) CTD kinase large subunit is encoded by CTK1, a gene required for normal growth of Saccharomyces cerevisiae. Gene Expr 1:149–167

    Google Scholar 

  • Li Y, Kornberg RD (1994) Interplay of positive and negative effectors in function of the C-terminal repeat domain of RNA polymerase II. Proc Natl Acad Sci USA 91:2362–2366

    Google Scholar 

  • Lindell TJ, Weinberg F, Morris PW, Roeder RG, Rutter WJ (1970) Specific inhibition of nuclear RNA polymerase II by α-amanitin. Science 170:447–449

    Google Scholar 

  • Lu H, Flores O, Weinmann R, Reinberg D (1991) The nonphosphorylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc Natl Acad Sci USA 88: 10004–10008

    Google Scholar 

  • Lu H, Zawel L, Fisher L, Egly JM, Reinberg D (1992) Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature 358:641–645

    Google Scholar 

  • Marciniak RA, Sharp PA, (1991) HIV-1 Tat protein promotes formation of more-processive elongation complexes. EMBO J 10:4189–4196

    Google Scholar 

  • Marshall NF, Price DH (1992) Control of formation of two distinct classes of RNA polymerase II elongation complexes. Mol Cell Biol 12:2078–2090

    Google Scholar 

  • Meulia T, Krumm A Groudine M (1993) Distinct properties of cmyc transcriptional elongation are revealed in Xenopus oocytes and mammalian cells ad by template titration, 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), and promoter mutagenesis. Mol Cell Biol 13:5647–5658

    Google Scholar 

  • Mukherjee R, Molloy GR (1987) 5,6-Dichloro-1-β-d-ribofuranosylbenzimidazole inhibits transcription of the β-hemoglobin gene in vivo at initiation. J Biol Chem 262:13697–13705

    Google Scholar 

  • Nonet M, Sweetser D, Young RA (1987) Functional redundancy and structural polymorphism in the largesubunit of RNA polymerase II. Cell 50:909–915

    Google Scholar 

  • O'Brien T, Hardin S, Greenleaf AL, Lis JT (1994) Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature 370:75–77

    Google Scholar 

  • Payne JM, Dahmus ME (1993) Partial purification and characterization of two distinct protein kinases that differentially phosphorylate the carboxyl-terminal domain of RNA polymerase subunit IIa. J Biol Chem 268:80–87

    Google Scholar 

  • Pelling C (1964) Ribonukleinsäure-Synthese der Riesenchromosomen. Autoradiographische Untersuchungen an Chironomus tentans. Chromosoma 15:71–122

    Google Scholar 

  • Ringborg U, Rydlander L (1971) Nucleolar-derived ribonucleic acid in chromosomes nuclear sap and cytoplasm of Chironomus tentans salivary gland cells. J Cell Biol 51:355–368

    Google Scholar 

  • Roberts S, Bentley DL (1992) Distinct modes of transcription read through or terminate at the c-myc attenuator. EMBO J 11:1085–1093

    Google Scholar 

  • Roy R, Adamczewski JP Seroz T, Vermeulen W, Tassan J, Schaeffer L, Nigg EA, Hoeijmakers JHJ, Egly J (1994) The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79:1093–1101

    Google Scholar 

  • Sass H (1980) Features of in vitro puffing and RNA synthesis in polytene chromosomes of Chironomus. Chromosoma 78: 33–78

    Google Scholar 

  • Sass H (1982) RNA polymerase B in polytene chromosomes: immunofluorescent and autoradiographic analysis during stimulated and repressed RNA synthesis. Cell 28:269–278

    Google Scholar 

  • Sawadogo M, Sentenac A (1990) RNA polymerase B (II) and general transcription factors. Annu Rev Biochem 59:711–754

    Google Scholar 

  • Serizawa H, Conaway RC, Conaway JW (1992) A carboxy-terminal-domain kinase associated with RNA polymerase II transcription factor delta from rat liver. Proc Natl Acad Sci USA 89:7476–7480

    Google Scholar 

  • Stevens A, Maupin MK, (1989) 5,6-Dichloro-1-β-d-ribofuranosylbenzimidazole inhibits a HeLa protein kinase that phosphorylates an RNA polymerase II-derived peptide. Biochem Biophys Res Commun 159:508–515

    Google Scholar 

  • Stigare J, Egyházi E (1991) The nuclear 42-kDa phosphoprotein preferentially binds promoter-containing single-stranded DNA. Biochem Biophys Res Com 176:1565–1570

    Google Scholar 

  • Stigare J, Egyházi E (1995) Purification and identification of a nuclear protein kinase that binds promoter-containing single-stranded DNA. In Geisow MJ, Epton R (eds) Perspectives on Protein Engineering, Third International Symposium, Oxford, England, pp 108–113

  • Stigare J, Kovacs J, Buddelmeijer N, Egyházi E (1992) A novel nuclear 42-kDa casein kinase identified in Chironomus tentons. FEBS Lett 314:327–330

    Google Scholar 

  • Stone N, Reinberg D (1992) Protein kinases from Aspergillus nidulans that phosphorylate the carboxyl-terminal domain of the largest subunit of RNA polymerase II. J Biol Chem 267: 6353–6360

    Google Scholar 

  • Tamm I, Kikuchi T (1979) Early termination of heterogeneous nuclear RNA transcripts in mammalian cells: accentuation by 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole. Proc Natl Acad Sci USA 76:5750–5754

    Google Scholar 

  • Thompson NE, Steinberg TH, Aronson DB, Burgess RR (1989) Inhibition of in vivo and in vitro transcription by monoclonal antibodies prepared against wheat germ RNA polymerase II that react with the heptapeptide repeat of eukaryotic RNA polymerase II. J Biol Chem 264:11511–11520

    Google Scholar 

  • Towbin HT, Staehelin JG, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA 76:4350–4354

    Google Scholar 

  • Usheva A, Maldonado E, Goldring A, Lu H, Houbavi C, Reinberg D, Aloni Y (1992) Specific interaction between the nonphosphorylated from of RNA polymerase II and the TATA-binding protein. Cell 69:871–881

    Google Scholar 

  • Weeks JR, Hardin SE, Shen J, Lee JM, Greenleaf AL (1993) Locus-specific variation in phosphorylation state of RNA polymerase II in vivo: Correlations with gene activity and transcript processing. Genes Dev 7:2329–2344

    Google Scholar 

  • Wieslander L, Paulsson G (1992) Sequence organization of the Balbiani ring 2.1 gene in Chironomus tentans Proc Natl Acad Sci USA 89:4578–4582

    Google Scholar 

  • Winicov I, Button JD (1982) Dichlorobenzimidazole-riboside inhibition of nuclear RNA accumulation initiated with γ-thio analogues of ATP and GTP. Eur J Biochem 124: 239–244

    Google Scholar 

  • Zandomeni R (1989) Kinetics of inhibition by 5,6-dichloro-1-β-d-ribofuranosyl-benzimidazole on calf thymus casein kinase II. Biochem J 262: 469–473

    Google Scholar 

  • Zandomeni R, Weinmann R (1984) Inhibitory effect of 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole on a protein kinase. J Biol Chem 259: 14804–14811

    Google Scholar 

  • Zandomeni R, Miuleman B, Bunick D, Ackerman, S, Weinmann R (1982) Mechanism of action of dichloro-β-d-ribofuranosylbenzimidazole: effect on in vitro transcription. Proc Natl Acad Sci USA 79: 3167–3170

    Google Scholar 

  • Zehring WA, Greenleaf AL (1990) The carboxyl-terminal repeat domain of RNA polymerase II is not required for transcription factor Sp1 to function in vitro. J Biol Chem 265: 8351–8353

    Google Scholar 

  • Zehring WA, Lee JM, Weeks JR, Jokerst RS, Greenleaf AL (1988) The C-terminal repeat domain of RNA polymerase II largest subunit is essential in vivo but is not required for accurate transcription initiation in vitro. Proc Natl Acad Sci USA 85: 3698–3702

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egyházi, E., Ossoinak, A., Pigon, A. et al. Phosphorylation dependence of the initiation of productive transcription of balbiani ring 2 genes in living cells. Chromosoma 104, 422–433 (1996). https://doi.org/10.1007/BF00352266

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352266

Keywords

Navigation