Skip to main content
Log in

Experimental transport of Si, Al and Mg in hydrothermal solutions: an application to vein mineralization during high-pressure, low-temperature metamorphism in the French Alps

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A study of hydrothermal vein mineralization in meta-argillites subjected to high-pressure, low-temperature metamorphism reveals that ferromagnesian (e.g., chlorite) and pure aluminosilicate (e.g., pyrophyllite) mineralization can be correlated with regimes of increasing and decreasing temperature, respectively. An experimental study of the transport of silica, aluminum and magnesium in hydrothermal solutions has been undertaken to simulate variations in the physical conditions during metamorphism and the accompanying mass transport in a closed system. Thermodynamic and kinetic analysis of the experimental results indicates that local equilibrium among aqueous and mineral phases controls the distribution and composition of hydrothermal vein mineralization and that vein mineralogy can be used to infer the sense of variation of pressure and temperature during metamorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold M, Guillou JJ (1983) Croissance naturelle de paracristaux de quartz dans une saumure sulfatée calcique à basse température. Bull Mineral 4:106:417–442

    Google Scholar 

  • Barton PB Jr (1981) Physical-chemical conditions of ore deposition. In: Rickard D, Wickman FE (eds) Chemistry and geochemistry of solutions at high temperatures and pressures. Physics and Chemistry of the Earth. Pergamon Press, vol 13 and 14, pp 509–526

  • Baumer A, Klee W, Lapraz D, Mullis J, Oberhänsli R (1982) Etudes cristallochimiques de l'apatite d'une fente alpine, la Filbia, Massif du Saint Gothard. Bull Suisse Minéral Petrogr 62:353–363

    Google Scholar 

  • Bowers TS, Jackson KS, Helgeson HC (1984) Equilibrium activity diagrams. Springer, Berlin Heidelberg New York Tokyo, pp 1–397

    Google Scholar 

  • Burnham CW, Holloway JR, Davis NF (1969) Thermodynamic properties of water to 1000° C and 10,000 bars. Geol Soc Am Spec Pap 132:96

    Google Scholar 

  • Chopin C, Schreyer W (1983) Magnesiocarpholite and Magnesiochloritoid: two index minerals of pelitic blueschists and their preliminary phase relations in the model system MgO-Al2O3-SiO2-H2O. Am J Sci 283A:72–96

    Google Scholar 

  • Davy P, Gillet P (1986) The stacking of thrust slices in collison zones and its thermal consequences. Tectonics 5: 6:913–929

    Google Scholar 

  • Ellenberger F (1958) Etude géologique du pays de Vanoise. Mém Explic Carte Geol Fr, pp 1–561

  • Ellis AZ (1979) Explored geothermal systems. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. John Wiley and Sons, pp 632–683

  • Eugster HP (1981) Metamorphic solutions and reactions. In: Rickard D, Wickman FE (eds) Chemistry and geochemistry of solutions at high pressures and temperatures. Physics and Chemistry of the Earth, Pergamon Press, vol 13 and 14, pp 461–503

  • Ferry JM (1983) Regional metamorphism of the Vassalboro formation south central Maine, USA: a case study of the role of fluid in metamorphic petrogenesis. J Geol Soc London 140:551–576

    Google Scholar 

  • Ferry JM (1986) Infiltration of aqueous fluid and high fluid: rock ratios during greenschist facies metamorphism: a reply. J Petrol 27: 3:695–714

    Google Scholar 

  • Goffé B (1980) Magnesiocarpholite, cookéite et euclase dans les niveaux continentaux métamorphiques de la zone briançonnaise. Données minéralogiques et nouvelles occurrences. Bull Mineral 103:297–302

    Google Scholar 

  • Goffé B (1982) Définition du faciès à Fe-Mg-carpholite-chloritoïde, un marqueur du métamorphisme de HP-BT dans les métasédiments alumineux. Thése Doctorat d'Etat, Paris, vol 2, pp 1–212

    Google Scholar 

  • Goffé B, Chopin C (1986) High pressure metamorphism in the western Alps: zoneography of metapelites, chronology and consequences. Bull Suisse Mineral Petrogr 66:41–52

    Google Scholar 

  • Goffé B, Saliot P (1977) Les associations minéralogiques des roches hyperalumineuses du Dogger de Vanoise. Leur signification dans le métamorphisme régional. Bull SFMC 100:302–309

    Google Scholar 

  • Goffé B, Velde B (1984) Contrasted metamorphic evolutions in the thrusted cover units of Briançonnais zone (French Alps): a model for the conservation of HP-LT metamorphic mineral assemblages. Earth Planet Sci Lett 68:351–360

    Google Scholar 

  • Goffé B, Villey M (1984) Texture d'un matériel carboné impliqué dans un métamorphisme haute pression-basse température (Alpes françaises). Les hautes pressions influencent-elles la carbonification? Bull Mineral 107:81–91

    Google Scholar 

  • Grappin C (1977) Contribution à l'étude géochimique du brome en milieu évaporitique par activation neutronique. Thèse 3ème cycle, Orléans, pp 1–132

  • Helgeson HC (1969) Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am J Sci 267:729–804

    Google Scholar 

  • Helgeson HC, Kirkham DH (1974) Theoretical prediction of thethermodynamic behavior of aqueous electrolytes at high pressures and temperatures. I. Summary of the thermodynamic/electrostatic properties of the solvent. Am J Sci 274:1089–1198

    Google Scholar 

  • Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock forming minerals. Am J Sci 278 A:1–229

    Google Scholar 

  • Helgeson HC, Kirkham DH, Flowers GC (1981) Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures. IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties at 600° C and 5 kbar. Am J Sci 281:1249–1516

    Google Scholar 

  • Helgeson HC, Murphy WM, Aagaard P (1984) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. II. Rate constants, effective surface area, and the hydrolysis of feldspar. Geochim Cosmochim Acta 48:2405–2432

    Google Scholar 

  • Laudise RA (1966) Techniques of crystal growth. In: Peiser HS (ed) Crystal Growth. Pergamon Press, pp 3–16

  • McGee KA, Hostetler PB (1975) Studies in the system MgO-SiO2-CO2-H2O. IV. The stability of MgOH+ from 10° to 90° C. Am J Sci 275:304–317

    Google Scholar 

  • Murphy WM (1987) Calculations of geochemical mass transfer as a function of temperature and time. LLNL Report: Geochemical Modeling Workshop, September 1986 (in press)

  • Norton D, Cathles LM (1979) Thermal aspects of ore deposition. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. John Wiley and Sons, pp 611–631

  • Orville PM (1962) Alkali metasomatism and feldspars. Norsk Geologisk Tidsskrift 42:283–316

    Google Scholar 

  • Pascal ML (1984) Nature at propriétés des espèces en solution dans le système K2O-Na2O-SiO2-Al2O3-H2O-HCl: contribution expérimentale. Thése Doctorate d' Etat, Université P. et M. Curie, Paris, pp 1–84

    Google Scholar 

  • Petrov TG, Treivus EB, Kasatkin AP (1969) Growing crystals from solution. Translation from Russian, Soviet Physics-semiconductors. Consultants Bureau New York, pp 1–106

  • Rumble D, Ferry JM, Hoering TC, Boucot AJ (1982) Fluid flow during metamorphism at the Leaver Brook fossil locality New Hampshire. Am J Sci 282:886–919

    Google Scholar 

  • Rabeneau A (1981) Method for the study of hydrothermal crystallization. In: Rickard D, Wickman FE (ed) Chemistry and geochemistry of solutions at high temperatures and pressures. Physics and Chemistry of the Earth, Pergamon press, vol 13 and 14:361–373

  • Sabouraud-Rosset C, Touray JC (1970) Sur les conditions de néoformation du quartz en terrains salifères d'aprés l'étude d'inclusions fluides (exemples pris en Vanoise et dans les Corbières). Bull Suisse Minéral Petrogr 50:91–97

    Google Scholar 

  • Schäfer H (1981) Chemical transport reactions in gases and some remarks concerning melts and fluid phases. In: Rickard D, Wickman FE (eds) Chemistry and geochemistry of solutions at high temperatures and pressures. Physics and chemistry of the Earth. Pergamon press, vol 13 and 14, pp 409–415

  • Skinner BJ (1979) The many origins of hydrothermal mineral deposits. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. John Willey and Sons, pp 1–21

  • Taylor M, Kesler SE, Cloke PL, Kelly WC (1983) Fluid inclusion evidence for fluid mixing, Mascot-Jefferson City zinc district, Tennessee. Econ Geol 78:1425–1439

    Google Scholar 

  • Thompson AB, Ridley JR (1987) Pressure-temperature-time (PTt) histories of orogenic belts. Philos Trans R Soc London A 321:27–45

    Google Scholar 

  • Tuttle OF (1949) Two pressure vessels for silicate-water studies. Bull Geol Soc Am 60:1727–1729

    Google Scholar 

  • Walther JV, Helgeson HC (1977) Calculation of the thermodynamic properties of aqueous silica and the solubility of quartz and its polymorphs at high pressures and temperature. Am J Sci 277:1315–1351

    Google Scholar 

  • Walther JV, Orville PM (1982) Volatile production and transport in regional metamorphism. Contrib Mineral Petrol 79:252–257

    Google Scholar 

  • Wood BJ, Graham CM (1986) Infiltration of aqueous fluid and high fluid: rock ratios during greenschist facies metamorphism: a discussion. J Petrol 27:751–761

    Google Scholar 

  • Woodland AB, Walther JV (1987) Experimental determination of the solubility of the assemblage paragonite, albite, and quartz in supercritical H2O. Geochim Cosmochim Acta 51: 2:365–372

    Google Scholar 

  • Yajima J, Touray JC, Iiyama J (1967) Les inclusions fluides d'albites de la région de Modane. Bull Soc Fr Minéral Cristall 90:394–398

    Google Scholar 

  • Yardley BWD, Baltatzis E (1985) Retrogression of staurolite schists and the sources of infiltrating fluids during metamorphism. Contrib Mineral Petrol 89:59–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goffé, B., Murphy, W.M. & Lagache, M. Experimental transport of Si, Al and Mg in hydrothermal solutions: an application to vein mineralization during high-pressure, low-temperature metamorphism in the French Alps. Contr. Mineral. and Petrol. 97, 438–450 (1987). https://doi.org/10.1007/BF00375322

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375322

Keywords

Navigation