Skip to main content
Log in

Late Hercynian U-vein mineralization in the Alps: fluid inclusion and C, O, H isotopic evidence for mixing between two externally derived fluids

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Late Hercynian U-bearing carbonate veins within the metamorphic complex of La Lauzière are characterized by two parageneses. The first is dominated by dolomite or ankerite and the second by calcite and pitchblende. Fluids trapped in the dolomites and ankerites at 350–400° C are saline waters (20 to 15 wt % eq. NaCl) with δD∼ −34 to −49‰. In the calcite they are less saline (17 to 8 wt % eq. NaCl) and trapped at 300–350° C with δD∼ −50 to −65‰. All fluids contain trace N2, CO2 and probably CH4. The carbonates have Δ 13C∼ −8 to −14‰. and derived their carbon from organic matter. Evolution of the physico-chemical conditions from dolomite (ankerite) to calcite deposition was progressive.

H and O-isotope studies indicate the involvement of two externally derived fluids during vein development. A D-rich (∼ −35‰) low fO2, saline fluid is interpreted to have come from underlying sediments and entered the hotter overlying metamorphic slab and mixed with more oxidizing and less saline U bearing meteoric waters during regional uplift. This evidence for a sedimentary formation water source for the deep fluid implies that the metamorphic complex overthrusted sedimentary formations during the Late-Hercynian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arthaud F, Matte P (1975) Les décrochements tardihercyniens du Sud-Ouest de l'Europe. Géométrie et essai de reconstitution des conditions de la déformation. Tectonophysics 25:139–171

    Google Scholar 

  • Aumaitre R, Poncerry E (1980) P.E.R. Lauzière. Carte géologique synthétique — 1/50 000 Minatome SA Alpes. Unpublished report

  • Bodinier J, Dupuy C, Dostal J, Carme F (1981) Geochemistry of ophiolites from the Chamrousse Complex (Belledonne Massif, Alps). Contrib Mineral Petrol 78:379–388

    Google Scholar 

  • Carothers WW, Kharaka YK (1980) — Stable carbon isotopes of HCO 3 in oil-field waters, implications for the origin of CO2. Geochim Cosmochim Acta 44:323–332

    Google Scholar 

  • Cathelineau M (1982) Les gisements d'uranium liés spatialement aux leucogranites sud-armoricains et à leur encaissant métamorphique. Sciences de la Terre, Mém n∘ 42, p 408

  • Cathelineau M, Cuney M, Leroy J, Lhote F, Nguyen CT, Pagel M, Poty B (1982) Caractères minéralogiques des pechblendes de la province hercynienne d'Europe. Comparaison avec les oxydes d'uranium du protérozoïque de différents gisements d'Amérique du Nord d'Afrique et d'Australie. In: Vein type and similar uranium deposits in rocks younger than proterozoïc, IAEA, Vienna Proc Symp Lisbon, 1979, pp 159–177

  • Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:235–244

    Google Scholar 

  • Clayton RN, Friedman I, Graf DL, Mayeda TK, Meents WF, Shimp NF (1966) The origin of saline formation water. I. Isotopic composition. J Geophys Res 71:3869–3882

    Google Scholar 

  • Cuney M (1978) Geologic environment, mineralogy and fluid inclusions of the Bois Noirs-Limouzat uranium vein, Forez, France. Econ Geol 73:1567–1610

    Google Scholar 

  • Cuney M (1981) Comportement de l'uranium et du thorium au cours du métamorphisme: rôle de l'anatexie dans la genèse des magmas riches en radioéléments. Unpublished thesis, Nancy, p 520

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Google Scholar 

  • Holland HD, Malinin SD (1979) The solubility and occurrence of non-ore minerals. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd ed. Wiley, New York, pp 461–508

    Google Scholar 

  • Hunt JA, Kerrick DM (1977) The stability of sphene; experimental redetermination and geologic implications. Geochim Cosmochim Acta 41:279–288

    Google Scholar 

  • Le Fort P (1981) Manaslu leucogranite: a collision signature of the Himalaya a model for its genesis and emplacement. J Geophys Research 86:10545–10568

    Google Scholar 

  • Le Fort P, Cuney M, Deniel C, France-Lanord C, Sheppard SMF, Upreti BN, Vidal P (1986) Crustal generation of the Himalayan leucogranites. Tectonophysics (in press)

  • Leroy J (1978) Métallogenèse des gisements d'uranium de la division de la Crouzille (COGEMA, Nord-Limousin, France). Sc de la Terre, Mém 36, p 271

  • Leroy J, Holliger P (1984) Mineralogical, chemical and-isotopic (U-Pb method) studies of Hercynian uraniferous mineralizations (Margnac and Fanay mines, Limousin, France). Chem Geol 45:121–134

    Google Scholar 

  • Ludwig KR, Nash JT, Naeser CW (1981) U-Pb isotope systematics and age of uranium mineralization, Midnite mine, Washington. Econ Geol 76:89–110

    Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and a paleotemperature scale. J Chem Physics 18:849–857

    Google Scholar 

  • Menard G (1980) Profondeur du socle antétriasique dans le Sud-Est de la France. CR Acad Sc Paris 290:299–302

    Google Scholar 

  • Negga HS (1984) Comportement de l'uranium au cours des métamorphismes tardi-hercynien et alpin dans les massifs des Aiguilles Rouges et de Belledonne (Vallorcine, Lauzière). Alpes Occidentales. Unpub thesis, Nancy, p 420

  • Negga HS, Cuney M (1986) Calcium activity control on the respective stability of monazite and allanite. Implication for uranium metallogeny. To be submitted

  • Ohmoto H (1972) Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ Geol 67/5:551–578

    Google Scholar 

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd ed. Wiley, New York, pp 509–567

    Google Scholar 

  • O'Neil JR, Clayton RN, Mayeda TK (1969) Oxygen isotope fractionation in divalent metal carbonates. J Chem Phys 51:5547–5558

    Google Scholar 

  • Pagel M, Ruhlman F (1979) Minéralogie et inclusions fluides dans les formations filoniennes minéralisées (Cu, Mo, Ag, U) du secteur de Château Lambert (Vosges méridionales). Bull Minéral 102:654–664

    Google Scholar 

  • Perrier G (1980) La structure des Alpes Occidentales déduite des données géophysiques. Eclogae Geologicae Helveticae 73, 2:407–424

    Google Scholar 

  • Poncerry E (1981) Contribution à l'étude géologique des granitoïdes de Vallorcine, Beaufort, Lauzière, de leur encaissant et des minéralisations uranifères associées (Alpes Françaises). Unpub thesis, Grenoble, p 316

  • Potter RW, Brown DL (1977) The volumetric properties of aqueous sodium chloride solutions from 0 to 500° C and pressures up to 2000 bars based on a regression of available data in literature. US Geol Surv Bull 1421-C, p 36

    Google Scholar 

  • Rosenberg PE, Holland HD (1964) Calcite-dolomite-magnesite stability relations in solutions at elevated temperatures. Science 145:700–701

    Google Scholar 

  • Rosenberg PE, Burt DM, Holland HD (1967) Calcite-dolomite-magnesite stability relations in solutions: the effect of ionic strength. Geochim Cosmochim Acta 31:391–396

    Google Scholar 

  • Schwarcz HP (1969) Carbon: the isotopes in nature. In: Wedelpohl KH (ed) Handbook of geochemistry, vol II-1. Springer, Berlin Heidelberg New York, pp 1–16

    Google Scholar 

  • Sharma T, Clayton RN (1965) Measurement of 18O/16O ratios of total oxygen of carbonates. Geochim Cosmochim Acta 29:1347–1354

    Google Scholar 

  • Sheppard SMF, Schwarcz HP (1970) Fractionation of carbon and oxygen isotopes and magnesium between metamorphic calcite and dolomite. Contrib Mineral Petrol 26:161–198

    Google Scholar 

  • Sheppard SMF (1984) Stable isotope studies of formation waters and associated Pb-Zn hydrothermal ore deposits. In: Durand B (ed) Thermal phenomena in sedimentary basins. Paris, Technip, pp 301–317

    Google Scholar 

  • Taylor HP (1979) Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd ed. Wiley, New York, pp 236–277

    Google Scholar 

  • Turpin L (1984) Alterations hydrothermales et caracterisation isotopique (O-H-C) des minéraux et des fluides dans le mas- sif uranifère de St Sylvestre. Extension à d'autres gisements intragranitiques d'uranium français. Géol Géochim Uranium, Mem Nancy, n∘ 6, p 190

  • Tugarinov AI, Vernadskiy VI (1970) Dependence of the decrepitation temperature of minerals on the composition of their gasliquid inclusions and hardness. Doklady Akad Nauk SSSR 195:112–114

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Negga, H.S., Sheppard, S.M.F., Rosenbaum, J.M. et al. Late Hercynian U-vein mineralization in the Alps: fluid inclusion and C, O, H isotopic evidence for mixing between two externally derived fluids. Contr. Mineral. and Petrol. 93, 179–186 (1986). https://doi.org/10.1007/BF00371319

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371319

Keywords

Navigation