Skip to main content
Log in

Inter-diffusion coefficients parallel to the C-Axis in iron-rich clinopyroxenes calculated from microstructures

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Subsolidus marginal zoning in calcium-poor clinopyroxenes and intermediate zoning in discontinuously zoned subcalcic- to calcium-rich clinopyroxenes from ironrich igneous rocks is used to calculate the interdiffusion coefficient, DCa−(Fe,Mg), parallel to the crystallographic caxis. Wagner's mathematical models describing the displacement of interfaces in solids as the result of isothermal diffusion are adopted. The steady-state heat flow equation is used to approximate the diffusion times. The calculated interdiffusion coefficients are of a reasonable order of magnitude, viz. 6.0×10−20−2.0×10−17cm2· sec−1 at about 900° C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blackwell DD (1978) Heat flow and energy loss in the Western United States. Geol Soc Am Mem 152:175–208

    Google Scholar 

  • Brady JB, McCallister RH (1980) Diffusion kinetics of homogenization and coarsening of pigeonite lamellae in subcalcic diopsides. Geol Soc Am Abstr: 391

  • Brown GM (1968) Experimental studies of inversion relations in natural pigeonitic pyroxenes. Carnegie Inst Wash Year Book 66:347–353

    Google Scholar 

  • Falkum T, Petersen JS (1980) The Sveconorwegian Orogenic belt, a case of Late-Proterozoic plate-collision. Geol Rundsch 69:622–647

    Google Scholar 

  • Grambling JA (1981) Pressures and temperatures in Precambrian metamorphic rocks. Earth Planet Sci Lett 53:63–68

    Google Scholar 

  • Grover JE, Lindsley DH, Turnock AC (1972) Ca-Mg-Fe pyroxenes: subsolidus phase relations in iron-rich portions of the pyroxene quadrilateral. Geol Soc Am Abstr 4:521–522

    Google Scholar 

  • Hermans GAEM, Tobi AC, Poorter RPE, Maijer C (1975) The high-grade metamorphic Precambrian of the Sirdal-Ørsdal area, Rogaland/Vest-Agder, south-west Norway. Norges Geol Unders 318:51–74

    Google Scholar 

  • Huebner JS (1976) Diffusively rimmed xenocrysts in 77115. Lunar Sci VII: 396–398

    Google Scholar 

  • Huebner JS, Ross M, Hickling N (1975) Significance of exsolved pyroxenes from Lunar breccia 77215. Proc Lunar Sci Conf 6:529–546

    Google Scholar 

  • Huebner JS, Nord Jr GL (1981) Assessment of diffusion in pyroxenes: what we do and do not know. Lunar and Planetary Sci XII: 479–481

    Google Scholar 

  • Ishii T (1975) The relations between temperature and composition of pigeonite in some lavas and their application to geothermometry. Mineral J 8:48–57

    Google Scholar 

  • Jost W (1952) Diffusion in Solids, Liquids, Gasses. Physical Chemistry Hutchison E ed. Academic Press Inc New York:68–75

    Google Scholar 

  • Kars H, Jansen JBH, Tobi AC, Poorter RPE (1980) The metapelitic rocks of the polymetamorphic Precambrian of Rogaland, SW Norway. Part II: Mineral relations between cordierite, hercynite and magnetite within the osumilite-in isograd. Contrib Mineral Petrol 74:235–244

    Google Scholar 

  • Lally JS, Heuer AH, Nord Jr GL, Christie JM (1975) Subsolidus reactions in Lunar pyroxenes: An electron petrographic study. Contrib Mineral Petrol 51:263–281

    Google Scholar 

  • Lindsley DH, King Jr HE, Turnock AC, Grover JE (1974) Phase relations in the pyroxene quadrilateral at 980° C and 15 kbar. Geol Soc Am Abstr 6:846

    Google Scholar 

  • Maijer C, Andriessen PAM, Hebeda EH, Jansen JBH, Verschure RH (1981) Osumilite, an approximately 970 Ma old high-temperature index mineral of the granulite-facies metamorphism in Rogaland, SW Norway. Geol and Mijnbouw 60:267–272

    Google Scholar 

  • Martignole J (1979) Charnockite genesis and the Proterozoic crust. Precambrian Res 9:303–310

    Google Scholar 

  • McCallister RH (1980) Determinations of major cation diffusion constants in pyroxenes. Geol Soc Am Abstr:479

  • McCallister RH, Brady JB, Mysen BO (1979) Self-diffusion of Ca in diopside. Carnegie Inst Wash Yearb 78:574–577

    Google Scholar 

  • Michot J, Michot P (1969) The problem of anorthosites: The South-Rogaland igneous complex, southwestern Norway. In: OARR YW Isachsen, ed New York State Museum and Sci ServMem 18:399–411

  • Miyamoto M, Takeda H (1977) Evaluation of a crust model of eucrites from the width of exsolved pyroxenes. Geochem J 11:161–169

    Google Scholar 

  • Rietmeijer FJM (1973) Verslag van een veldwerk in het zuidelijk en zuidoostelijk deel van de lopoliet van Bjerkreim-Sogndal, Rogaland, SW Noorwegen. Unpubl MSc thesis Rijksuniversiteit Utrecht the Netherlands: pp 125

  • Rietmeijer FJM (1979) Pyroxenes from iron-rich igneous rocks in Rogaland, SW Norway. Geol Ultraiectina 21, pp 341

    Google Scholar 

  • Rietmeijer FJM (1982) Regional pyroxene reequilibration in the Precambrian terrain of Rogaland (SW Norway) at about 750–600° C between 1,030–990 Ma. Submitted to N.G.T

  • Rietmeijer FJM, Champness PE (1980a) Inverted pigeonites from Rogaland, SW Norway. Inst Phys Conf Ser 52:105–108

    Google Scholar 

  • Rietmeijer FJM, Champness PE (1980b) Exsolution structures in calcic pyroxenes from Rogaland, SW Norway. Electron Microscopy 1:452–453

    Google Scholar 

  • Rietmeijer FJM, Champness PE (1982) Exsolution structures in calcic pyroxenes from the Bjerkreim-Sokndal lopolith, SW Norway, Min Mag 45:11–24

    Google Scholar 

  • Ross M, Huebner JS (1975) A pyroxene geothermometer based on composition-temperature relationships of naturally occurring orthopyroxene, pigeonite, and augite. Intern Conf Geothermometry and Geobarometry Pennsylvania State Univ University Park (Penn) oct 5–10

  • Ross M, Huebner JS (1979) Temperature-composition relationships between naturally occurring augite, pigeonite, and orthopyroxene at one bar pressure. Am Mineral 64:1133–1155

    Google Scholar 

  • Sanford RF, Huebner JS (1979) Reexamination of diffusion processes in 77115 and 77215. Lunar and Planetary Sci X:1052–1054

    Google Scholar 

  • Smith D (1974) Pyroxene-olivine-quartz assemblages in rocks associated with the Nain Anorthosite Massif, Labrador, J Petrol 15:58–78

    Google Scholar 

  • Stewart JH (1978) Basin-range structure in western North America: A review. Geol Soc Am Mem 152:1–33

    Google Scholar 

  • Swanenberg HEC (1980) Fluid inclusions in high-grade metamorphic rocks from SW Norway. Geol Ultraiectina 25, pp 147

    Google Scholar 

  • Wielens JBH, Andriessen PAM, Boelrijk NAIM, Hebeda EH, Priem HNA, Verdurmen EATh, Verschure RH (1981) Isotope geochronology in the highgrade metamorphic Precambrian of southwestern Norway: New data and reinterpretations. Norges Geol Unders 359:1–30

    Google Scholar 

  • Wilson AH (1982) The geology of the Great ‘Dyke’, Zimbabwe: The Ultramafic rocks. J Petrol 23:240–293

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rietmeijer, F.J.M. Inter-diffusion coefficients parallel to the C-Axis in iron-rich clinopyroxenes calculated from microstructures. Contr. Mineral. and Petrol. 83, 169–176 (1983). https://doi.org/10.1007/BF00373090

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00373090

Keywords

Navigation