Skip to main content
Log in

Differentiation of partial melts in the mantle: Evidence from the Balmuccia peridotite, Italy

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Balmuccia peridotite shows evidence, in the form of a network of dykes, of partial melting and flow crystallization processes. The partial melting processes probably occurred over a fairly long time interval, and seem to have been related to different “melting pulses”. Resultant liquids were broadly picritic. Melting occurred incongruently according to the scheme cpx+opx+(ol+sp)=Mg-richer ol+Cr-richer sp+L.

Partial melts tended at first to accumulate in horizontal layers; then, as the critical melting threshold was exceeded, liquids were able to filter slowly towards lower pressure zones. In doing so liquids fractionated initially in situ, via crystallisation of websteritic dykes of the Cr-diopside suite, and later, in the overlying mantle, via crystallisation of transitional dykes and those of the Al-augite suite. This filter-pressing stage, when flow velocities were very low and discontinuous, probably corresponded to the period of maximum deformability of the peridotite.

The type of differentiation testified by the dykes of the Balmuccia peridotite, is characterized by a decrease in SiO2, a rapid enrichment in Al2O3 and a mild increase in FeO, and is substantially in accordance with experimental trends from the fo-an-di-SiO2 system in the spinel-peridotite stability field. A close relationship between type of differentiation, flow velocity and mechanical behaviour of the mantle peridotite is a feature of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bhattacharji S (1967) Mechanism of flow differentiation in ultramafic and mafic sills. J Geol 75:101–112

    Google Scholar 

  • Boudier F, Nicolas A (1972) Fusion partielle gabbroique dans la Lherzolite de Lanzo (Alpes Piémontaise). Bull Suisse Min Petrol 52:39–56

    Google Scholar 

  • Capedri S, Garuti G, Rivalenti G, Rossi A (1977) The origin of the Ivrea-Verbano basic formation. Pyroxenitic and gabbroic mobilizates as products of the partial melting of mantle peridotite. Neues Jahrb Mineral Monatsh H4:168–179

    Google Scholar 

  • Carter JL (1970) Mineralogy and chemistry of the Earth's upper mantle based on partial fusion ⇆artial crystallization model. Geol Soc Amer Bull, 81:2021–2034

    Google Scholar 

  • Comin-Chiaramonti P, Demarchi G, Siena F, Sinigoi S (1983) Relazioni tra fusione e deformazioni nella peridotite di Balmuccia (Ivrea-Verbano). Rend SIMP, in press

  • Conquéré F (1971) Les pyroxenolites à amphibole et les amphibolites associées aux lherzolites du gisement de Lherz (Ariége, France): un exemple du rôle de l'eau au cours de la cristallisation fractionée de liquides issus de la fusion partielle de lherzolites. Contrib Mineral Petrol 33:32–61

    Google Scholar 

  • Dickey JS (1970) Partial fusion products in alpine-type peridotites: Serrania de la Ronda and other examples. Mineral Soc Am Spec Pap 3:33–49

    Google Scholar 

  • Ernst WG (1981) Petrogenesis of eclogites and peridotites from the Western and Ligurian Alps. Am Mineral 66:443–472

    Google Scholar 

  • Frey FA, Prinz M (1978) Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. EPSL 38:129–176

    Google Scholar 

  • Garuti G (1977) The origin of the Ivrea-Verbano basic formation (Italian Western Alps). Microstructural data on peridotites from the area of the Sesia Valley. Rend SIMP 33:601–616

    Google Scholar 

  • Garuti G, Friolo R (1979) Textural features and olivine fabrics of peridotites from Ivrea-Verbano zone. Mem Soc Geol Padova 33:111–125

    Google Scholar 

  • Garuti G, Rivalenti G, Rossi A, Sinigoi S (1979) Mineral equilibria as geotectonic indicators in the ultramafics and related rocks of the Ivrea-Verbano Basic Complex (Italian Western Alps): Pyroxenes and olivine. Mem Soc Geol Padova 33:147–170

    Google Scholar 

  • Green DH, Ringwood AE (1967) The genesis of basaltic magmas. Contrib Mineral Petrol 15:103–190

    Google Scholar 

  • Herzberg CT (1978) Pyroxene geothermometry and geobarometry: experimental and thermodynamic evaluation of some subsolidus phase relations involving pyroxenes in the system CaO-MgO-Al2O3-SiO2. Geochim Cosmochim Acta 42:945–958

    Article  Google Scholar 

  • Irvine TN (1976) Chromite crystallization in the join Mg2SiO4-CaMgSi2O6-CaAl2Si2O8-MgCr2O4-SiO2. Carnegie Inst Wash Yearb 76:465–472

    Google Scholar 

  • Irving AJ (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkalic basalts and implication for magmatic processes within the mantle. Am J Sci 280A:389–426

    Google Scholar 

  • Irving AJ, Price R (1981) Geochemistry and evolution of lherzolite-bearing phonolitic lavas from Nigeria, Australia, East Germany and New Zealand. Geochim Cosmochim Acta 45:1309–1320

    Google Scholar 

  • Jaques AL, Green DH (1980) Anhydrous melting of peridotite at O–15 kbar pressure and the genesis of tholeiitic basalts. Contrib Mineral Petrol 73:287–310

    Google Scholar 

  • Kornprobst J (1970) Les peridotites et les pyroxenolites du massif ultrabasique des Beni-Bouchera: une étude experimentàle entre 1100 et 1550° C, sous 15 à 30 Kbar de pression sèche. Contrib Mineral Petrol 29:290–309

    Google Scholar 

  • Kornprobst J, Conquéré F (1972) Les pyroxenolites à grenat du massif de lherzolite de Moncaup (Haute Garonne-France); caractères communs avec certaines enclaves des basaltes alcalins. EPSL 16:1–14

    Google Scholar 

  • Maaløe S (1982) Geochemical aspects of permeability controlled partial melting and fractional crystallization. Geochim Cosmochim Acta 46:43–57

    Google Scholar 

  • Mehnert KR (1975) The Ivrea Zone. A model of the deep crust. Neues Jahrb Mineral Abh 125:156–199

    Google Scholar 

  • Mercier JK, Nicolas A (1975) Textures and fabrics of upper-mantle peridotites as illustrated by xenoliths from basalts. J Petrol 16:454–487

    Google Scholar 

  • Niggli E (1973) Metamorphic map of the Alps: scale 1∶1.000.000, UNESCO, Paris

    Google Scholar 

  • Obata M (1976) The solubility of Al2O3 in orthopyroxenes, in spinel and plagioclase peridotites and spinel pyroxenites. Am Mineral 61:582–588

    Google Scholar 

  • Obata M (1980) The Ronda Peridotite: Garnet-, Spinel-, and Plagioclase-Lherzolite Facies and the P-T Trajectories of a High-Temperature Mantle Intrusion. J Petrol 21:533–572

    Google Scholar 

  • Obata M, Suen CJ, Dickey JS Jr (1980) The origin of mafic layers in the Ronda High-Temperature Peridotite Intrusion, S. Spain: an evidence of partial fusion and fractional crystallization in the Upper Mantle. Colloques Intern du CNRS N∘ 272-Les Orogènes, 257–268

  • Presnall DC (1976) Alumina content of enstatite as a geobarometer for plagioclase and spinel lherzolites. Am Mineral 61:582–588

    Google Scholar 

  • Presnall DC, Dixon JR, O'Donnel TH, Dixon SA (1979) Generation of Mid-ocean Ridge Tholeiites. J Petrol 20:3–35

    Google Scholar 

  • Quick JE (1981) The origin and significance of large, tabular dunite bodies in the Trinity peridotite, Northern California. Contrib Mineral Petrol 78:413–422

    Google Scholar 

  • Rivalenti G (1979) Guide to the excursion in the Balmucia zone, Sesia Valley, Ivrea-Verbano Complex. Mem Soc Geol Padova 33:3–9

    Google Scholar 

  • Rivalenti G, Garuti G, Rossi A (1975) The origin of the Ivrea-Verbano basic formation (Western Alps): Whole rocks geochemistry. Boll Soc Geol Ital 94:1149–1186

    Google Scholar 

  • Rivalenti G, Garuti G, Rossi A, Sinigoi S (1979) Spinels as petrogenetic indicators an the Ivrea-Verbano basic complex (Italian Western Alps). Mem Soc Geol Padova 33:161–171

    Google Scholar 

  • Rivalenti G, Garuti G, Rossi A, Siena F, Sinigoi S (1981a) Existence of different peridotite types and of a layered igneous complex in the Ivrea Zone of the Western Alps. Jour Petrol 22:127–153

    Google Scholar 

  • Rivalenti G, Garuti G, Rossi A, Siena F, Sinigoi S (1981b) Chromian spinel in the Ivrea-Verbano Layered Igneous Complex, Western Alps, Italy. Tschermaks Mineral Petrogr Mitt 29:33–53

    Google Scholar 

  • Schubert W (1977) Reaktionen im alpinotypen Peridotitmassiv von Ronda (Spanien) und seinen partiellen Schmelzprodukten. Contrib Mineral Petrol 62:205–220

    Google Scholar 

  • Shervais J (1979a) Ultamafic and mafic layers in the alpine-type lherzolite massif at Balmuccia (Italy). Mem Soc Geol Padova 33:135–145

    Google Scholar 

  • Shervais J (1979b) Thermal emplacement model for the alpine lherzolite massif at Balmuccia (Italy). J Petrol 20:795–820

    Google Scholar 

  • Sinigoi S, Comin-Chiaramonti P, Alberti A (1980) Phase relations in the partial melting of the Baldissero spinel-lherzolite (Ivrea-Verbano Zone, Western Alps, Italy). Contrib Mineral Petrol 75:111–121

    Google Scholar 

  • Stolper E (1980) A phase diagram for Mid-Ocean Ridge basalts: preliminary results and implications for petrogenesis. Contrib Mineral Petrol 74:13–27

    Google Scholar 

  • Stroh JM (1976) Solubility of alumina in orthopyroxene plus spinel as a geobarometer in complex systems. Applications to spinel-bearing alpinetype peridotites. Contrib Mineral Petrol 54:173–188

    Google Scholar 

  • Wilkinson JFG (1975) Ultramafic inclusion and high pressure megacrysts from a nephelinite sill, Nandewar Mtns. NOW South Wales. Contrib Mineral Petrol 51:235–262

    Google Scholar 

  • Wilshire HG, Shervais JW (1975) Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from the Western United States. Phys Chem Earth 9:257–272

    Google Scholar 

  • Wilshire HG, Pike JEN, Meyer CE, Schwartzman EC (1980) Amphibole-rich veins in lherzolite xenoliths, Dish Hill and Deadmen Lake, California. Am J Sci 280A:576–593

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinigoi, S., Comin-Chiaramonti, P., Demarchi, G. et al. Differentiation of partial melts in the mantle: Evidence from the Balmuccia peridotite, Italy. Contrib Mineral Petrol 82, 351–359 (1983). https://doi.org/10.1007/BF00399712

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00399712

Keywords

Navigation