Skip to main content
Log in

CO2-Brine immiscibility at high temperatures, evidence from calcareous metasedimentary rocks

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Study of fluid inclusions in quartz segregations and in the rock matrix of a calcareous psammite and a carbonate schist suggests that brines containing 23–24 weight percent salt (NaCl equivalent) are immiscible with CO2 at the metamorphic conditions of approximately 600° and 6.5 Kb. The presence of a high temperature solvus between saline brine and CO2 is supported by other fluid inclusion studies as well as experimental measurements from the literature. As saline brines are common in metamorphic and hydrothermal systems, CO2-brine immiscibility should play an important role in petrogenesis. The fluid inclusions preserved in the quartz segregations probably represent the fluids generated by prograde metamorphic reactions, whereas the compositions of the fluids trapped in the rock matrix quartz suggest they have reequilibrated with the matrix minerals during incipient retrograde reactions. The isochores from the densest inclusions observed in this study pass close to the inferred peak metamorphic conditions; other isochores suggest an episode of deformation and recrystallization at 275° C and 1.4 Kb. Using the density information preserved in all the inclusions, a convex-downward uplift path on a P-T diagram is inferred for these rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold RG, Rutherford MJ (1969) Data for brine and carbon dioxide filled liquid inclusions in quartz veins from the Coronation Mine. Geol Surv Can Pap 68-5:213–228

    Google Scholar 

  • Burruss RC (1977) Analysis of fluid inclusions in graphitic metamorphic rocks from Bryant Pond, Maine, and Khtada Lake, British Columbia, thermodynamic basis and geologic interpretation of observed fluid compositions and molar volumes: Unpub PhD dissertation Princeton University 156p

  • Carmichael DM (1978) Metamorphic bathozones and bathograds: a measure of post-metamorphic uplift and erosion on the regional scale. Am J Sci 278:769–797

    Google Scholar 

  • Clynne MA, Potter RW III (1977) Freezing point depression of synthetic brines. Geol Soc Am Abstr Progr 9:930

    Google Scholar 

  • Crawford ML (1981) Fluid inclusions in metamorphic rocks — low and medium grade. In: Hollister LS, Crawford ML (eds) Short Course in Fluid Inclusions: Applications to Petrology. Mineral Assoc Canad pp 157–181

  • Crawford ML, Kraus DW, Hollister LS (1979) Petrologic and fluid inclusion study of calc-silicate rocks, Prince Rupert, British Columbia. Am J Sci 279:1135–1159

    Google Scholar 

  • Ganguly J (1972) Staurolite stability and related parageneses, theory, experiments and applications. J Petrol 13:335–365

    Google Scholar 

  • Gehrig M, Lentz H, Franck EU (1979) Thermodynamic properties of water-carbon dioxide-sodium chloride mixtures at high temperatures and pressures. In: Timmerhaus KD, Barber MS (eds) High pressure science and technology 1, Physical properties and meterial synthesis. Plenum, New York, pp 539–542

    Google Scholar 

  • Ghent ED, Robbins DB, Stout MZ (1979) Geothermometry and geobarometry and fluid compositions of metamorphosed calcsilicates and pelites, Mica Creek, British Columbia. Am Mineral 64:874–885

    Google Scholar 

  • Hendel EM, Hollister LS (1981) An empirical solvus for CO2-H2O-2.6 wt. % salt. Geochim Cosmochim Acta 45:225–228

    Google Scholar 

  • Hewitt DA (1973) The metamorphism of micaceous limestones from South-central Connecticut. Am J Sci 273-A: 444–469

    Google Scholar 

  • Holdaway MJ (1971) Stability of audalusite and the aluminum silicate phase diagram. Am J Sci 271:97–131

    Google Scholar 

  • Hollister LS, Burruss RC (1976) Phase equilibria in fluid inclusions from the Khtada Lake metamorphic complex. Geochim Cosmochim Acta 40:163–175

    Google Scholar 

  • Hollister LS, Burruss RC, Henry KL, Hendel EM (1979) Physical conditions during uplift of metamorphic terranes as recorded by fluid inclusions. Bull Minéral 102:555–561

    Google Scholar 

  • Holloway JR (1981) Compositions and volumes of supercritical fluids in the earth's crust. In: Hollister LS, Crawford ML (eds) Short course in fluid inclusions: Applications to petrology. Mineral Assoc Canada pp 13–38

  • Konnerup-Madsen J (1977) Composition and microthermometry of fluid inclusions in the Kleivan Granite, South Norway. Am J Sci 277:673–696

    Google Scholar 

  • Konnerup-Madsen J (1979) Fluid inclusions in quartz from deep-seated granitic intrusions, South Norway. Lithos 12:13–23

    Google Scholar 

  • Kreulen R (1980) CO2-rich fluids during regional metamorphism on Naxos (Greece): Carbon isotopes and fluid inclusions. Am J Sci 280:745–771

    Google Scholar 

  • Leroy J (1979) Contribution à l'étalonnage de la pression interne des inclusions fluide lors de leur décrépitation. Bull Minéral 102:284–593

    Google Scholar 

  • Linke WF (1958) Solubilities of inorganic and metal organic compounds, 4th ed, vol 1. D Van Nostrand, Princeton, 1487 p

    Google Scholar 

  • Linke WF (1965) Solubilities of organic and metal organic compounds, 4th ed, vol 2. Am Chem Soc Washington DC, 1914 p

    Google Scholar 

  • Luckscheiter B, Morteani G (1980) Microthermometrical and chemical studies of fluid inclusions in minerals from Alpine veins from the penninic rocks of the central and western Tauern Window (Austria/ Italy). Lithos 13:61–77

    Google Scholar 

  • Meyer RJ (1932) Eisen, Teil B. Die Verbindungen des Eisens, Gmelins Handbuch der anorganischen Chemie, 8th ed. Verlag Chemie GMBH, Berlin, 1166 p

    Google Scholar 

  • Miyashiro A (1973) Metamorphism and metamorphic belts. Halsted Press New York, 492 p

    Google Scholar 

  • Moore JM, Thompson PH (1980) The Flinton Group: a late Precambrian metasedimentary succession in the Grenville Province of eastern Ontario, Can J Earth Sci 17:1685–1707

    Google Scholar 

  • Naumov VB, Khakimov AKH, Khodakovskiy IL (1974) Solubility of carbon dioxide in concentrated chloride solutions at high temperatures and pressures. Geochem Int 11:31–41

    Google Scholar 

  • O'Neil JR, Ghent ED (1975) Stable-isotope study of coexisting metamorphic minerals from the Esplanade Range, British Columbia. Geol Soc Am Bull 86:1708–1712

    Google Scholar 

  • Pagel M (1975) Cadre géologique des gisements d'uranium dans la structure Carswell (Saskatchewan, Canada) “Etude des phases fluides”. Thèse docteur de specialité troisième cycle, Université de Nancy I, 145 p

  • Pecher A (1979) Les inclusions fluides des quartz d'exsudation de la zone du MCT himalayen au Népal central donnés sur la phase fluide dans une grande zone de cisaillement crustal. Bull Minéral 102:537–554

    Google Scholar 

  • Potter RW III, Brown DL (1977) The volumetric properties of aqueous sodium chloride solutions from 0° to 500° C at pressures up to 2000 bars based on a regression of available data in the literature. US Geol Survey Bull 1421-C:36 p

  • Potter RW II, Clynne MA, Brown DL (1978) Freezing point depression of aqueous sodium chloride solutions. Econ Geol 73:284–285

    Google Scholar 

  • Potter RW II, Haas JL Jr (1977) A model for the calculation of the bulk thermodynamic properties of geothermal fluids. Geothermal Resources Council Transactions 1:243–244

    Google Scholar 

  • Poty B, Leroy J, Jachimowicz L (1976) Un nouvel appareil pour la mesure des températures sous le microscope: L'installation de microthermométrie Chaixmeca. Bull Soc Fr Minéral Cristallogr 99:182–186

    Google Scholar 

  • Ramboz C (1979) A fluid inclusion study of the copper mineralization in southwest Tintic district (Utah). Bull Minéral 102:622–632

    Google Scholar 

  • Rich RA (1975) Fluid inclusions in metamorphosed Paleozoic rocks of eastern Vermont. Unpubl PhD dissertation Harvard University

  • Rich RA (1979) Fluid inclusion evidence for Silurian evaporites in southeastern Vermont. Geol Soc Am Bull 90:pt II 1628–1643

    Google Scholar 

  • Roedder E (1962) Studies of fluid inclusions I. Low temperature application of a dual-purpose freezing and heating stage. Econ Geol 57:1045–1061

    Google Scholar 

  • Roedder E (1963) Studies of fluid inclusions II: Freezing data and their interpretation. Econ Geol 58:167–211

    Google Scholar 

  • Roedder E (1970) Application of an improved crushing microscope stage to studies of the gases in fluid inclusions. Schweiz Mineral Petrogr Mitt 50:41–58

    Google Scholar 

  • Roedder E (1972) Composition of fluid inclusions. US Geol Surv Prof Pap 440JJ:164 p

  • Shmonov VM, Smulovich KI (1974) Molal volumes and equation of state of CO2 at temperatures from 100 to 1000° C and pressures from 2000 to 10,000 bar. Dokl Akad Nauk SSSR 217:935–938

    Google Scholar 

  • Swanenberg HEC (1979) Phase equilibria in carbonic systems and their application to freezing studies of fluid inclusions. Contrib Mineral Petrol 68:303–306

    Google Scholar 

  • Swanenberg HEC (1980) Fluid inclusions in high-grade metamorphic rocks from SW Norway. Unpub Doctoral dissertation University of Utrecht 146 p

  • Takenouchi S, Kennedy GC (1965) The solubility of carbon dioxide in NaCl solution at high temperatures and pressures. Am J Sci 263:445–454

    Google Scholar 

  • Thompson AB (1976) Mineral reactions in pelitic schists. II Calculation of some P-T-X (Fe-Mg) phase relations. Am J Sci 276:401–454

    Google Scholar 

  • Thompson PH (1973) Mineral zones and isograds in “impure” calcareous rocks an alternative means of evaluating metamorphic grade. Contrib Mineral Petrol 42:63–80

    Google Scholar 

  • Thompson PH (1976) Isograd patterns and pressure-temperature distributions during regional metamorphism. Contrib Mineral Petrol 57:277–295

    Google Scholar 

  • Tödheide K, Franck EU (1963) Das Zweiphasengebiet und die kritische Kurve im System Kohlendioxid-Wasser bis zu Drucken von 3500 bar. Z Phys Chem Neuefolge 37:388–401

    Google Scholar 

  • Touret J (1977) The significance of fluid inclusions in metamorphic rocks. In: Fraser DG (ed) Thermodynamics in Geology. D Reidel, Boston, pp 203–227

    Google Scholar 

  • Weisbrod A, Poty B, Touret J (1976) Les inclusions fluides en géochimie — pétrologie: tendances actuelles. Bull Soc Fr Mineral Cristallogr 99:140–152

    Google Scholar 

  • Yanatieva OK (1946) Solubility polytherms in the systems CaCl2-MgCl2-H2O and CaCl2-NaCl-H2O. Z Prikl Khim 19:709–722 (in Russian)

    Google Scholar 

  • Ypma PJM, Fuzikawa K (1980) Fluid inclusions and oxygen isotope studies of the Nabarlek and Jabiluka uranium deposits Northern Territory Australia. Proc Int Uranium Symposium on the Pine Creek Geosyncline 1980:375–395

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sisson, V.B., Crawford, M.L. & Thompson, P.H. CO2-Brine immiscibility at high temperatures, evidence from calcareous metasedimentary rocks. Contr. Mineral. and Petrol. 78, 371–378 (1982). https://doi.org/10.1007/BF00375199

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00375199

Keywords

Navigation