Skip to main content
Log in

Electron optical investigation of sedimentary dolomites

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Transmission electron microscope studies demonstrate a structural distinction between stoichiometric and ancient calcian dolomites of sedimentary origin. A modulated or tweed structure similar in appearance to spinodal microstructures characterizes ancient calcian dolomites, whereas stoichiometric dolomites are homogeneous. Recent calcium-rich dolomites lack a modulated structure, but have a heterogeneous microstructure with high densities of growth defects. Electron and optical diffraction and lattice imaging suggest a fluctuation in interplanar spacing in a coherent lattice. In addition, lattice imaging also reveals discontinuous faults throughout the modulated structure. Ordering and possibly incipient exsolution are suggested, ‘c’ reflections in SAD patterns of calcian dolomites document a new superstructure in at least part of the lamellar structure and raise questions of different ordering states throughout the structure.

The results provide new insight regarding the formation of sedimentary dolomites

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aaronson HI, Lorimer GW, Champness PE, Spooner ETC (1974) On differences between phase transformations (exsolution) in metals and silicates. Chem Geol 14:75–80

    Google Scholar 

  • Allen SM, Cahn JW (1976a) Mechanisms of phase transformations within the miscibility gap of Fe-rich Fe-Al alloys. Acta Metall 24:425–437

    Google Scholar 

  • Allen SM, Cahn JW (1976b) On tricritical points resulting from the intersection of lines of higher-order transitions with spinodals. Scripta Metall 10:451–454

    Google Scholar 

  • Althoff PL (1977) Structural refinements of dolomite and a magnesian calcite and implications for dolomite formation in the marine environment. Am Mineral 62:772–783

    Google Scholar 

  • Amelinckx S, Van Landuyt J (1976) Contrast effects at planar interfaces. In: Wenk HR (ed) Electron Microscopy in Mineralogy. Springer, Berlin Heidelberg New York, pp 68–112

    Google Scholar 

  • Barber DJ, Wenk HR (1973) The microstructures of experimentally deformed limestones. J Mater Sci 8:500–508

    Google Scholar 

  • Barber DJ, Heard HC, Wenk HR (1981) Deformation of dolomite single crystals from 20–800° C. Gottingen Int Conf Rock Deformation Proc 1981 (in press)

  • Barnes I, O'Neil JR (1971) Calcium-magnesium carbonate solid solutions from Holocene conglomerate cements and travertines in the Coast Range of California. Geochim Cosmochim Acta 35:699–718

    Google Scholar 

  • Cahn JW (1968) Spinodal decomposition. Trans Am Inst Min, Metall Pet Eng 242:166–180

    Google Scholar 

  • Carpenter MA (1980) Mechanisms of exsolution in sodic pyroxenes. Contrib Mineral Petrol 71:289–300

    Google Scholar 

  • Champness PE, Lorimer GW (1976) Exsolution in silicates. In: Wenk HR (ed) Electron Microscopy in Mineralogy. Springer, Berlin Heidelberg New York, pp 174–204

    Google Scholar 

  • Cockayne DJH, Parsons JR, Hoelke CW (1971) A study of the relationship between lattice fringes and lattice planes in electron microscope images of crystals containing defects. Phil Mag 24:139–153

    Google Scholar 

  • Cowley JM, Cohen JB, Salamon MB, Wuensch BJ (1979) Modulated Structures — 1979. Am Inst Phys, New York

    Google Scholar 

  • Fuchtbauer H, Goldschmidt H (1965) Beziehungen zwischen Calciumgehalt und Bildungsbedingungen der Dolomite. Geol Rundschau 55:29–40

    Google Scholar 

  • Gaines A (1974) Protodolomite synthesis at 100° C and atmospheric pressure. Science 183:518–520

    Google Scholar 

  • Goldsmith JR (1980) Thermal stability of dolomite at high temperatures and pressures. J Geophys Res 85:6949–6954

    Google Scholar 

  • Goldsmith JR, Graf DL (1958) Structural and compositional variations in some natural dolomites. J Geol 66:678–693

    Google Scholar 

  • Goldsmith JR, Heard HC (1961) Subsolidus phase relations in the system CaCO3-MgCO3. J Geol 69:45–74

    Google Scholar 

  • Goldsmith JR, Graf DL, Heard HC (1961) Lattice constants of the calcium-magnesium carbonates. Am Mineral 46:453–457

    Google Scholar 

  • Goldsmith JR, Newton RC (1969) P-T-X relations in the system CaCO3-MgCO3 at high temperatures and pressures. Am J Sci 267A: 160–190

    Google Scholar 

  • Graf DL, Goldsmith JR (1955) Dolomite-magnesian calcite relations at elevated temperatures and CO2 pressures. Geochim Cosmochim Acta 7:109–128

    Google Scholar 

  • Graf DL, Goldsmith JR (1956) Some hydrothermal syntheses of dolomite and protodolomite. J Geol 64:173–186

    Google Scholar 

  • Graf DL, Blyth CR, Stemmler RS (1967) One-dimensional disorder in carbonates. Il St Geol Surv circ 408:1–60

    Google Scholar 

  • Harker RI, Tuttle OF (1955) Studies in the system CaO-MgO-CO2: Pt. 2: Limits of solid solution along the binary join CaCO3-MgCO3. Am J Sci 253:274–282

    Google Scholar 

  • Heuer AH, Nord GL (1976) Polymorphic phase transitions in minerals. In: Wenk HR (ed) Electron Microscopy in Mineralogy. Springer, Berlin Heidelberg New York, pp 274–303

    Google Scholar 

  • Hilliard JE (1970) Spinodal decomposition. In: Phase Transformations, Am Soc for Metals, Metals Park, Ohio, pp 497–560

    Google Scholar 

  • Katz A, Matthews A (1977) The dolomitization of CaCO3: An experimental study at 252–295° C. Geochim Cosmochim Acta 41:297–308

    Google Scholar 

  • Laughlin DE (1976) Spinodal decomposition in nickel based nickel-titanium alloys. Acta Metall 24:53–58

    Google Scholar 

  • Lippmann F (1973) Sedimentary Carbonate Minerals. Springer, New York

    Google Scholar 

  • McConnell JDC (1965) Electron optical study of effects associated with partial inversion in a silicate phase. Phil Mag 11:1289–1301

    Google Scholar 

  • McConnell JDC (1969) Electron optical study of incipient exsolution and inversion phenomena in the system NaAlSi3O8. Phil Mag 19:221–229

    Google Scholar 

  • McConnell JDC (1971) Electron optical study of phase transformations. Mineral Mag 38:1–20

    Google Scholar 

  • Owen DC, McConnell JDC (1971) Spinodal behaviour in an alkali feldspar. Nature Phys Sci 230:118–119

    Google Scholar 

  • Owen DC, McConnell JDC (1974) Spinodal unmixing in an alkali feldspar. In: MacKenzie WS, Zussman J (eds) The Feldspars. Manchester Univ Press, Manchester, pp 424–439

    Google Scholar 

  • Reeder RJ (1980) Phase transformations in dolomites. PhD Thesis, University of California Berkeley

    Google Scholar 

  • Reeder RJ, Wenk HR (1979a) Microstructures in low temperature dolomites. Geophys Res Lett 6:77–80

    Google Scholar 

  • Reeder RJ, Wenk HR (1979b) Modulated structures in sedimentary dolomite. In: Cowley JM et al. (eds) Modulated Structures — 1979. Am Inst Phys, New York, pp 330–332

    Google Scholar 

  • Reeder RJ, Wenk HR (in preparation) Thermal disordering in dolomite.

  • Reeder RJ, Nakajima Y (in preparation) Lattice imaging of APBs in dolomite.

  • Sinclair R, Schneider K, Thomas G (1975) Analysis of ordering in Cu3Au utilizing lattice imaging techniques. Acta Metall 23:873–883

    Google Scholar 

  • Sinclair R, Gronsky R, Thomas G (1976) Optical diffraction from lattice images of alloys. Acta Metall 24:789–796

    Google Scholar 

  • Spence JCH, Cowley JM, Gronsky R (1979) The effects of lens abberations on lattice images of spinodally decomposed alloys. Ultramicroscopy 4:429–433

    Google Scholar 

  • Steinfink H, Sans FT (1959) Refinement of the crystal structure of dolomite. Am Mineral 44:679–682

    Google Scholar 

  • Sureau JF (1977) The dolomitization of calcite: an experimental approach. Proc 2nd Int Symp on Water-Rock Interaction 2:207–217

    Google Scholar 

  • Yund RA, McCallister RH (1970) Kinetics and mechanisms of exsolution. Chem Geol 6:5–30

    Google Scholar 

  • Yund RA, McLaren AC, Hobbs BE (1974) Coarsening kinetics of the exsolution microstructure in alkali feldspar. Contrib Mineral Petrol 48:45–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reeder, R.J. Electron optical investigation of sedimentary dolomites. Contr. Mineral. and Petrol. 76, 148–157 (1981). https://doi.org/10.1007/BF00371955

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00371955

Keywords

Navigation