Skip to main content
Log in

An experimental study of Fe-Mg partitioning between olivine and orthopyroxene at 1173, 1273 and 1423 K and 1.6 GPa

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The partitioning of Mg and Fe2+ between coexisting olivines and orthopyroxenes in the system MgO-FeO-SiO2 has been investigated experimentally at 1173, 1273, 1423 K and 1.6 GPa over the whole range of Mg/Fe ratios. The use of barium borosilicate as a flux to promote grain growth, and the identification by back-scattered electron imaging of resulting growth rims suitable for analysis by electron microprobe, results in coexisting olivine and orthopyroxenene compositions determined to a precision of±0.003 to 0.004 in molar Fe/(Mg+Fe). Quasi-reversal experiments were performed starting with Mg-rich olivine and Fe-rich orthopyroxene (low KD) and vice versa (high KD), which produced indistinguishable results. The distribution coefficient, KD, depends on composition and on temperature, but near Fe/(Mg+Fe)=0.1 (i.e. mantle compositions) these effects cancel out, and KD is insensitive to temperature. The results agree well with previous experimental investigations, and constrain the thermodynamic mixing properties of Mg-Fe olivine solid solutions to show small near-symmetric deviations from ideality, with \(W_{G_{Mg - Fe}^{ol} }\) between 2000 and 8000 J/mol. Multiple non-linear least squares regression of all data gave a best fit with \(W_{G_{Mg - Fe}^{ol} } = 5625 \pm 574 J/mol\) (implying 5450 J/mol at 1 bar) and \(W_{G_{Mg - Fe}^{opx} } = 2145 \pm 614 J/mol\), but the two W G parameters are so highly correlated with each other that our data are almost equally well fit with \(W_{G_{Mg - Fe}^{ol} } = 3700 \pm 800 J/mol\), as obtained by Wiser and Wood. This value implies \(W_{G_{Mg - Fe}^{opx} } = 280 \pm 900 J/mol\), apparently independent of temperature. Our experimental results are not compatible with the assessment of olivine-orthopyroxene equilibria of Sack and Ghiorso.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen DJ, Lindsley DH (1979) The olivine-ilmenite thermometer. Proc Lunar Planet Sci Conf 10th: 493–507

    Google Scholar 

  • Berman RG (1988) Internally consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J Petrol 29:445–552

    Google Scholar 

  • Berman RG, Brown TH (1985) The heat capacity of minerals in the system K2O-Na2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: representation, estimation, and high temperature extrapolation. Contrib Mineral Petrol 89:168–183

    Google Scholar 

  • Bevington PRC (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York, pp 336

    Google Scholar 

  • Bohlen SR, Boettcher AL (1981) Experimental investigations and geological applications of orthopyroxene geobarometry. Am Mineral 66:951–964

    Google Scholar 

  • Bohlen SR, Essene EJ, Boettcher AL (1980) Reinvestigation and application of olivine-quartz-orthopyroxene barometry. Earth Planetary Sci Lett 47:1–10

    Google Scholar 

  • Boyd FR, England JL (1960) Apparatus for phase-equilibrium measurements at pressures up to 50 kilobars and temperatures up to 1750°C. J. Geophys Res 65:741–748

    Google Scholar 

  • Burns RG (1985) Thermodynamic data from crystal field spectra. In: Kieffer SW, Navrotsky A (eds) Reviews in Mineralogy, vol 14: Microscopic to macroscopic: 277–316

  • Chatillon-Collinet C, Newton RC, Perkins D III, Kleppa OJ (1983) Thermochemistry of (Fe2+, Mg)SiO3 orthopyroxene. Geochim Cosmochim Acta 47:1597–1603

    Google Scholar 

  • Davidson PM, Lindsley DH (1989) Thermodynamic analysis of pyroxene-olivine-quartz equilibria in the system CaO-MgO-FeO-SiO2. Am Mineral 74:18–30

    Google Scholar 

  • Davies PK, Navrotsky A (1983) Quantitative correlations of deviations from ideality in binary and pseudo-binary solid solutions. J Solid State Chem 46:1–22

    Google Scholar 

  • Fonarev VI (1981) Thermodynamic functions of olivine and orthopyroxene solid solutions. Geochem Int 18:142–157

    Google Scholar 

  • Hackler RT, Wood BT (1989) Experimental determination of Fe and Mg exchange between garnet and olivine and estimation of Fe-Mg mixing properties in garnet. Am Mineral 74:994–999

    Google Scholar 

  • Hauptmann Z, Wanklyn BM, Smith SH (1973) Flux growth of Fe2TiO4 from BaO-B2O3 in an iron crucible. J Mat Sci 8:1695–1698

    Google Scholar 

  • Holland TJB (1980) The reaction albite = jadeite + quartz determined experimentally in the range 600–1200°C. Am Miner 65:129–134

    Google Scholar 

  • Holland TJB, Powell R (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O-Na2O-CaO-MgO-MnO-FeO-Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2. J Metam Geol 8:89–124

    Google Scholar 

  • Huebner JS (1980) Pyroxene phase equilibria at low pressure. In: Prewitt CT (ed) Pyroxenes. Reviews in Mineralogy, vol 7. Mineralogical Society of America, Washington DC, pp 213–288

    Google Scholar 

  • Jacob KT, Kale GM, Iyengar GNK (1989) Chemical potentials of oxygen for fayalite-quartz-iron and fayalite-quartz-magnetite equilibria. Metallurg Trans B 20B:679–685

    Google Scholar 

  • Jamieson HE, Roeder PL, Grant AH (1992) Olivine-orthopyroxene-Pt-Fe alloy as an oxygen geobarometer. J Geol 100:138–145

    Google Scholar 

  • Kitayama K, Katsura T (1968) Activity measurements in orthosilicate and metasilicate solid solutions. I. Mg2Si4-Fe2SiO4 and MgSiO3-FeSiO3 at 1204°C. Bull Chem Soc Japan 41:1146–1151

    Google Scholar 

  • Kiukkola K, Wagner C (1957) Measurements on galvanic cells involving solid electrolytes. J Elektrochem Soc 104:379–387

    Google Scholar 

  • Koch-Müller M, Cemic L, Langer K (1992) Experimental and thermodynamic study of Fe-Mg exchange between olivine and orthopyroxene in the system MgO-FeO-SiO2. Eur J Mineral 4:115–135

    Google Scholar 

  • Kushiro I (1976) Changes in viscosity and structure of melt of NaAlSi2O6 composition at high pressures. J Geophys Res 81:6347–6350

    Google Scholar 

  • Larimer JW (1968) Experimental studies on the system Fe-MgO-SiO2-O2 and their bearing on the petrology of chondritic meteorites. Geochim Cosmochim Acta 32:1187–1207

    Google Scholar 

  • Levin EM, Robbins CR, McMurdie HF (1964) Phase diagrams for ceramists. Volume I (Figures 1-2066). The American Ceramic Society, Columbus

    Google Scholar 

  • Linares RC (1962) Growth of yttrium-iron garnet from molten barium borate. J Amer Ceram Soc 45:307–310

    Google Scholar 

  • Matsui Y, Nishizawa O (1974) Iron(II)-magnesium exchange equilibrium between olivine and calcium-free pyroxene over a temperature range 800°C to 1300°C. Bull Soc Fr Mineral Cristallogr 97:122–130

    Google Scholar 

  • Medaris LG Jr (1969) Partitioning of Fe++ and Mg++ between coexisting synthetic olivine and orthopyroxene. Am J Sci 267:945–968

    Google Scholar 

  • Morioka M, Nagasawa H (1991) Ionic diffusion in olivine. In: Ganguly J (ed) Diffusion, atomic ordering, and mass transport. Springer, New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona, pp 176–196

    Google Scholar 

  • Nafziger RH, Muan A (1967) Equilibrium phase compositions and thermodynamic properties of olivines and pyroxenes in the system MgO-“FeO”-SiO2. Am Mineral 52:1364–1384

    Google Scholar 

  • O'Neill HStC (1987) The quartz-fayalite-iron and quartz-fayalitemagnetite magnetite equilibria and the free energies of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4). Am Mineral 72:67–75

    Google Scholar 

  • O'Neill HStC, Wall VJ (1987) The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth's upper mantle. J Petrol 28:1169–1191

    Google Scholar 

  • O'Neill HStC, Wood BJ (1979) An experimental study of Fe-Mg partitioning between garnet and olivine and its calibration as a geothermometer. Contrib Mineral Petrol 70:59–70

    Google Scholar 

  • Orr RL (1953) High temperature heat contents of magnesium orthosilicate and ferrous orthosilicate. J Am Chem Soc 75:528–529

    Google Scholar 

  • Ottonello G, Princivalle F, Della Giusta A (1990) Temperature, composition, and fO2 effects on intersite distribution of Mg and Fe2+ in olivines: experimental evidence and theoretical interpretation. Phys Chem Mineral 17:301–312

    Google Scholar 

  • Ramberg H, De Vore G (1951) The distribution of Fe++ and Mg++ in coexisting olivines and pyroxenes. J Geol 59:193–210

    Google Scholar 

  • Ross NL, Navrotsky A (1987) The Mg2GeO4 olivine-spinel phase transition. Phys Chem Mineral 14:473–481

    Google Scholar 

  • Ross NL, Akaogi M, Navrotsky A, Susaki J-I, McMillan P (1986) Phase transitions among the CaGeO3 polymorphs (wollastonite, garnet, and perovskite structures): studies by high-pressure synthesis, high-temperature calorimetry, and vibrational spectroscopy and calculation. J Geophys Res 91(B5):4685–4696

    Google Scholar 

  • Sack RO, Ghiorso MS (1989) Importance of considerations of mixing properties in establishing an internally consistent thermodynamic database: thermochemistry of minerals in the system Mg2SiO4-Fe2SiO4-SiO2. Contrib Mineral Petrol 102:41–68

    Google Scholar 

  • Schwab RG, Küstner D (1977) Prazisionsgitterkonstantenbestimmung zur Festlegung röngtgenographischer Bestimmungskurven für synthetischen Olivin der Mischkristallreihe Forsterit-Fayalit. N Jahrb Mineral Monatsh 1977:205–215

    Google Scholar 

  • Seetharaman S, Abraham KP (1980) Thermodynamic properties of oxide systems. In: Subbarao EC (ed) Solid electrolytes and their applications. Plenum, New York London, pp 127–163

    Google Scholar 

  • Seifert F (1989) Recent advances in the mineralogical applications of the 57Fe Mösbauer effect. In: Salje EKH (ed) Physical properties and thermodynamic behaviour of minerals. Reidel, Dordrecht Boston Lancaster Tokyo, pp 687–703

    Google Scholar 

  • Seifert S, O'Neill HStC (1987) Experimental determination of activity-composition relations in Ni2SiO-Mg2SiO4 and Co2SiO4-Mg2SiO4 olivine solid solutions at 1200 K and 0.1 MPa and 1573 K and 0.5 GPa. Geochim Cosmochim Acta 51:97–104

    Google Scholar 

  • Sharma KC, Agrawal RD, Kapoor ML (1987) Determination of thermodynamic properties of (Fe, Mg)-pyroxenes at 1000 K by the emf method. Earth Planet Sci Lett 85:302–310

    Google Scholar 

  • Srčeč I, Ender A, Woermann E, Gans W, Jacobsson E, Eriksson G, Rosen E (1987) Activity-composition relations of the magnesiowustite solid solution series in equilibrium with metallic iron in the temperature range 1050–1400 K. Phys Chem Mineral 14:492–498

    Google Scholar 

  • Thompson JB Jr (1967) Thermodynamic properties of simple solutions. In: Abelson PH (ed) Researches in geochemistry, vol 2. Wiley, New York, pp 340–361

    Google Scholar 

  • Turnock AC, Lindsley DH, Grover JE (1973) Synthesis and unit cell parameters of Ca-Mg-Fe pyroxenes. Am Mineral 58:50–59

    Google Scholar 

  • Virgo D, Hafner SS (1969) Fe2+, Mg order-disorder in heated orthopyroxenes. Mineral Soc Am Spec Pap 2:67–81

    Google Scholar 

  • Wiser NM, Wood BJ (1991) Experimental determination of activities in Fe-Mg olivine at 1400 K. Contrib Mineral Petrol 108:146–153

    Google Scholar 

  • Wilson AH (1982) The geology of the Great ‘Dyke’, Zimbabwe: the ultramafic rocks. J Petrol 23:240–292

    Google Scholar 

  • Wood BJ, Kleppa OJ (1981) Thermochemistry of forsterite-fayalite olivine solutions. Geochim Cosmochim Acta 45:569–581

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Seckendorff, V., O'Neill, H.S.C. An experimental study of Fe-Mg partitioning between olivine and orthopyroxene at 1173, 1273 and 1423 K and 1.6 GPa. Contr. Mineral. and Petrol. 113, 196–207 (1993). https://doi.org/10.1007/BF00283228

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00283228

Keywords

Navigation