Skip to main content
Log in

Integral parameter models in non-linear viscoelasticity

  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

Integral models in non-linear viscoelasticity

Summary

The multiparametric models of non-linear viscoelasticity, as typified by theBird-Carreau model, are ill-posed which leads to the practical impossibility of accurately determining the parameter values. This, in turn, makes it hazardous to infer the molecular behaviour of the material although the inaccurate parameters may correctly predict the bulk material behaviour. Instead, it is proposed that models which are defined directly in terms of the measured data be employed. One such model has been briefly described and this model is also well-posed, i.e. the error does not propagate uncontrollably in the calculation when one attempts to improve the accuracy or resolution of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d :

rate of deformation tensor

F(s) :

spectral function inFredholm integral

K(x, s) :

kernel function inFredholm integral

n :

number of parameters or equations

n 1 :

empirical constant

P :

deviatoric stress tensor

P 12 :

shear stress

P 11P 22 :

first normal stress difference

R 1 ,R 2 :

cumulative relative errors defined by eqs. [6] and [7]

t :

time

α 1 :

empirical constant

\(\dot \gamma \) :

shear rate

η(\(\eta (\dot \gamma ),\eta _p \) :

viscosity functions, parameters

θ :

relaxation time ofWhite-Metzner model

λ :

characteristic fluid relaxation time

\(\overline{\overline \lambda } \) :

eigenvalues of the matrix, eq. [5]

v :

defined by eq. [8]

µ :

viscosity of non-linearMaxwell element

φ(x) :

function of material property

References

  1. Schwarzl, F. R. andL. C. E. Struick Advances in Molecular Relaxation Processes1, 201 (1967–68).

    Google Scholar 

  2. Schwarzl, F. J., Private communication to B. Hlaváček.

  3. Sinevic, V. andB. Hlaváček Rheol. Acta8, 247 (1969).

    Google Scholar 

  4. Stanislav, J. andB. Hlaváček, Trans. Soc. Rheol.17, 331 (1973).

    Google Scholar 

  5. Hlaváček, B. andF. A. Seyer J. Appl. Poly. Sci.16, 423 (1972).

    Google Scholar 

  6. Markovitz, H., in: Rheology Vol. IV (New York, 1967).

  7. Bernstein, B., E. Kearsley andL. Zapas Trans. Soc. Rheol.7, 391 (1963).

    Google Scholar 

  8. Bird, R. B. andP. J. Carreau Chem. Eng. Sci.23, 427 (1968).

    Google Scholar 

  9. Tanner, R. I. A. I. Ch. E. Journal15, 177 (1969).

    Google Scholar 

  10. Spriggs, T. W., J. D. Huppler andR. B. Bird Trans. Soc. Rheol.10, 191 (1966).

    Google Scholar 

  11. Huppler, J. D., L. A. Holmes andE. Ashare Trans. Soc. Rheol.11, 159 (1967).

    Google Scholar 

  12. Hlaváček, B., J. F. Stanislav andF. A. Seyer, Trans. Soc. Rheol.18, 27 (1974).

    Google Scholar 

  13. Babuška, I., M. Prager, andE. Vitásek, Numerical Processes in Differential Equations (London, 1966).

  14. Hlaváček, B. andP. J. Carreau, to be published.

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 3 tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hlaváček, B., Stanislav, J. & Patterson, I. Integral parameter models in non-linear viscoelasticity. Rheol Acta 14, 812–815 (1975). https://doi.org/10.1007/BF01521410

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01521410

Keywords

Navigation