Skip to main content

Advertisement

Log in

A transient climate change simulation with greenhouse gas and aerosol forcing: experimental design and comparison with the instrumental record for the twentieth century

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

 The Canadian Centre for Climate Modelling and Analysis (CCCma) global coupled model is used to investigate the potential climate effects of increasing greenhouse gas (GHG) concentrations and changes in sulfate aerosol loadings. The forcing scenario adopted closely resembles that of Mitchell et al. for both the greenhouse gas and aerosol components. Its implementation in the model and the resulting changes in forcing are described. Five simulations of 200 years in length, nominally for the years 1900 to 2100, are available for analysis. They consist of a control simulation without change in forcing, three independent simulations with the same greenhouse gas and aerosol changes, and a single simulation with greenhouse gas only forcing. Simulations of the evolution of temperature and precipitation from 1900 to the present are compared with available observations. Temperature and precipitation are primary climate variables with reasonable temporal and spatial coverage in the observational record for the period. The simulation of potential climate change from the present to the end of the twenty-first century, based on projected GHG and aerosol forcing changes, is discussed in a companion paper. For the historical period dealt with here, the GHG and aerosol forcing has changed relatively little compared to the forcing changes projected to the end of the twenty-first century. Nevertheless, the forced climate signal for temperature in the model is reasonably consistent with the observed global mean temperature from the instrumental record. This is true also for the trend in zonally averaged temperature as a function of latitude and for some aspects of the geographical and regional distributions of temperature. Despite the modest change in overall forcing, the difference between GHG+aerosol and GHG-only forcing is discernible in the temperature response for this period. Changes in precipitation, on the other hand, are much less evident in both the instrumental and simulated record. There is an apparent increasing trend in average precipitation in both the observations and the model results over that part of the land for which observations are available. Regional and geographical changes and trends (which are less affected by sampling considerations), if they exist, are masked by the large natural variability of precipitation in both model and observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received: 24 September 1998 / Accepted: 8 October 1999

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boer, G., Flato, G., Reader, M. et al. A transient climate change simulation with greenhouse gas and aerosol forcing: experimental design and comparison with the instrumental record for the twentieth century. Climate Dynamics 16, 405–425 (2000). https://doi.org/10.1007/s003820050337

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003820050337

Keywords

Navigation