Skip to main content
Log in

Subunit heterogeneity in arthropod hemocyanins: II. Crustacea

  • Published:
Journal of comparative physiology Aims and scope Submit manuscript

Summary

  1. 1.

    The hemocyanins of 10 decapod Crustacea were dissociated and their subunits analyzed by high resolution polyacrylamide electrophoresis (PAGE): 5 brachyuran crabs (Cancer pagurus, Carcinus maenas, Macropipus holsatus, Hyas araneus, Maja squinado), 3 Astacura (Astacus leptodactylus, Homarus americanus, Homarus gammarus) and the spiny lobstersPalinurus vulgaris andPanulirus interruptus

  2. 2.

    All of the species save the spiny lobsters possess a major hemocyanin component sedimenting with 24 S. A second hemocyanin component sedimenting with ca 16 S was found inH. gammarus, M. squinado, C. pagurus andM. holsatus (about 10 per cent in each case) and inA. leptodactylus (about 25 per cent). A second, major blood protein (10–25% of the total blood protein) was observed inH. gammarus where its sedimentation coefficient was 24 S,M. squinado (16 S),H. araneus (24 S) andC. pagurus (16 S). This second protein has no respiratory function. Two such non-respiratory proteins sedimenting with 24 S and 16 S were found inH. americanus.

  3. 3.

    Between 2 and 7 hemocyanin bands were obtained after incubation with sodium dodecylsulfate (SDS) and β-mercaptoethanol and subsequent electrophoresis in polyacrylamide gradients. The average molecular weight was about 75,000 in the crabs, 80,000 in the crayfishes and 85,000 in the spiny lobsters. The non-respiratory proteins yield between one and four chains with molecular weights ranging from 76,000 to 87,000.

  4. 4.

    The hemocyanins were dissociated at pH 9.6 into “native” subunits, but dissociation was not quantitative in several species. By gel filtration, the products were separated into undissociated material and hemocyanin monomers (5 S). InAstacus leptodactylus a dimeric subunit (7 S) was obtained in addition; its components are linked by a disulfide bridge. The subunit mixtures were separated by PAGE into 4 to 6 distinct bands.

  5. 5.

    To establish the total number of different polypeptide chains present in each hemocyanin, the two electrophoretic patterns were related to each other by preparative isolation of “native” subunits and subsequent analysis in SDS-PAGE. The number of different polypeptide chains ranges from four to seven in the species studied by us. In those species which contained both 24 S and 16 S hemocyanin, more different polypeptide chains were found in the 24 S hemocyanin than in the 16 S hemocyanin, the only exception beingHomarus gammarus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berg, A.A. Van den, Gaastra, W., Kuiper, H.A.: Heterogeneity ofPanulirus interruptus hemocyanin. In: Structure and function of haemocyanin. Bannister, J.V. (ed.), pp. 6–12. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  • Berthet, J., Baudhuin, P., Wibo, M.: Caractéristiques des hémocyanines d' Isopodes. Arch. Int. Physiol. Biochim.72, 676–677 (1964)

    Google Scholar 

  • Bijlholt, M.M.C., Bruggen, E.F.J. van, Bonaventura, J.: Dissociation and reassembly ofLimulus polyphemus hemocyanin. Eur. J. Biochem.95, 399–405 (1979)

    Google Scholar 

  • Brouwer, M., Bonaventura, C., Bonaventura, J.: Analysis of the effect of three different allosteric ligands on oxygen binding by hemocyanin of the shrimp,Penaeus setiferus. Biochemistry17, 2148–2154 (1978)

    Google Scholar 

  • Busselen, P.: The electrophoretic heterogeneity ofCarcinus maenas hemocyanin. Arch. Biochem. Biophys.137, 415–420 (1970)

    Google Scholar 

  • Chantler, E.N., Harris, R.R., Bannister, W.H.: Oxygenation and and aggregation of haemocyanin fromCarcinus mediterraneus andPotamon edulis. Comp. Biochem. Physiol.46 A, 333–343 (1973)

    Google Scholar 

  • Ellerton, H.D., Carpenter, D., Holde, K.E. Van: Physical studies of hemocyanins. V. Characterization and subunit structure of the hemocyanin ofCancer magister. Biochemistry9, 2225–2232 (1970)

    Google Scholar 

  • Ellerton, H.D., Collins, L.B., Gale, J.S., Yung, A.Y.P.: The subunit structure of the hemocyanin from the crayfishJasus edwardsii. Biophys. Chem.6, 47–57 (1977)

    Google Scholar 

  • Eriksson-Quensel, I.-B., Svedberg, T.: The molecular weights and pH-stability regions of the hemocyanins. Biol. Bull.71, 498–547 (1936)

    Google Scholar 

  • Ghiretti, F., Ghiretti-Magaldi, A., Salvato, B.: The chemical basis of the evolution of hemocyanins. In: Comparative physiology. Bolis, L., Schmidt-Nielsen, K., Maddrell, S.H.P. (eds.), pp. 509–522. Amsterdam: North-Holland Publishing Co. 1973

    Google Scholar 

  • Giamberardino, L. Di: Dissociation ofEriphia hemocyanin. Arch. Biochem. Biophys.118, 273–278 (1967)

    Google Scholar 

  • Hamlin, L.M., Fish, W.W.: The subunit characterization ofCallinectes sapidus hemocyanin. Biochim. Biophys. Acta491, 46–52 (1977)

    Google Scholar 

  • Holde, K.E. Van, Bruggen, E.F.J. van: The hemocyanins. In: Subunits in biological systems. Timasheff, S.N., Fasman, G.D. (eds.), pp. 1–53, New York: Marcel Dekker 1971

    Google Scholar 

  • Jeffrey, P.D., Shaw, D.C., Treacy, G.B.: Hemocyanin from the Australian freshwater crayfishCherax destructor. Studies of two different monomers and their participation in the formation of multiple hexamers. Biochemistry15, 5527–5533 (1976)

    Google Scholar 

  • Johnston, W., James, T.W., Barber, A.A.: Oxygen binding characteristics of lobster hemocyanin and its subunits. Comp. Biochem. Physiol.22, 261–271 (1967)

    Google Scholar 

  • Joubert, F.J.: Haemocyanin of the crawfish (Jasus lalandii). Biochim. Biophys. Acta14, 127–134 (1954)

    Google Scholar 

  • Kuiper, H.A., Gaastra, W., Beintema, J.J., Bruggen, E.F.J. van, Schepman, A.M.H., Drenth, J.: Subunit composition, X-ray diffraction, amino acid analysis and oxygen binding behaviour ofPanulirus interruptus hemocyanin. J. Mol. Biol.99, 619–629 (1975)

    Google Scholar 

  • Laemmli, U.K.: Cleavage of structural proteins during assembly of the head of bacteriophage T 4. Nature London227, 680–685 (1970)

    Google Scholar 

  • Lamy, J., Lamy, J., Baglin, M.-C., Weill, J.: Scorpion hemocyanin subunits: properties, dissociation, association. In: Structure and function of haemocyanin. Bannister, J.V. (ed.), pp. 37–49. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  • Lamy, J., Lamy, J., Weill, J., Markl, J., Schneider, H.-J., Linzen, B.: Hemocyanins in spiders, VII. Immunological comparison of the subunits ofEurypelma californicum hemocyanin. Hoppe-Seyler's Z. Physiol. Chem.360, 889–895 (1979a)

    Google Scholar 

  • Lamy, J., Lamy, J., Weill, J.: Arthropod hemocyanin structure. Isolation of eight subunits in the scorpion. Arch. Biochem. Biophys.193, 140–149 (1979b)

    Google Scholar 

  • Loehr, J.S., Mason, H.S.: Dimorphism ofCancer magister hemocyanin subunits. Biochem. Biophys. Res. Comm.51, 741–745 (1973)

    Google Scholar 

  • Markl, J., Schmid, R., Czichos-Tiedt, S., Linzen, B.: Haemocyanins in spiders. III. Chemical and physical properties of the proteins inDugesiella andCupiennius blood. Hoppe-Seyler's Z. Physiol. Chem.357, 1713–1725 (1976)

    Google Scholar 

  • Markl, J., Markl, A., Hofer, A., Schartau, W., Linzen, B.: Heterogene Untereinheiten bei Arthropoden-Hämocyaninen. Verh. Dtsch. Zool. Ges.1978, 265 (1978)

    Google Scholar 

  • Markl, J., Markl, A., Schartau, W., Linzen, B.: Subunit heterogeneity in arthropod hemocyanins: I. Chelicerata. J. Comp. Physiol.130, 283–292 (1979a)

    Google Scholar 

  • Markl, J., Strych, W., Schartau, W., Schneider, H.-J., Schöberl, P., Linzen, B.: Hemocyanins in spiders. VI. Comparison of the polypeptide chains ofEurypelma californicum hemocyanin. Hoppe-Seyler's Z. Physiol. Chem.360, 639–650 (1979b)

    Google Scholar 

  • Miller, K.I., Eldred, N.W., Arisaka, F., Holde, K.E. Van: Structure and function of hemocyanin from thalassinid shrimp. J. Comp. Physiol.115, 171–184 (1977)

    Google Scholar 

  • Moore, C.H., Henderson, R.W., Nichol, L.W.: An examination of the polymerization behavior ofJasus lalandii haemocyanin and its relation to the allosteric binding of oxygen. Biochemistry7, 4075–4085 (1968)

    Google Scholar 

  • Murray, A.C., Jeffrey, P.D.: Hemocyanin from the Australian freshwater crayfish,Cherax destructor. Subunit heterogeneity. Biochemistry13, 3667–3671 (1974)

    Google Scholar 

  • Pickett, S.M., Riggs, A.F., Larimer, J.L.: Lobster hemocyanin: properties of the minimum functional subunit and of aggregates. Science151, 1005–1007 (1966)

    Google Scholar 

  • Robinson, H.A., Ellerton, H.D.: Heterogeneous subunits of the hemocyanins fromJasus edwardsii andOvalipes catharus. In: Structure and function of haemocyanin. Baunister, J.V. (ed.), pp. 55–70. Berlin, Heidelberg, New York: Springer 1977

    Google Scholar 

  • Schneider, H.-J., Markl, J., Schartau, W., Linzen, B.: Hemocyanins in spiders. IV. Subunit heterogeneity ofEurypelma (Dugesiella) hemocyanin and separation of polypeptide chains. Hoppe-Seyler's Z. Physiol. Chem.358, 1133–1141 (1977)

    Google Scholar 

  • Sevilla, C., Lagarrigue, J.-G.: Êtude comparée des hémocyanines deLigia italica et d'Armadillo officinalis (Crustacés, Isopodes, Oniscoides). C.R. Acad. Sci. Paris, Sér. D282, 893–896 (1976)

    Google Scholar 

  • Sevilla, C.: Les hémocyanines chez les oniscoides. Dissociation sous l'influence du pH et donées structurales. Arch. Int. Physiol. Biochim.85, 125–131 (1977)

    Google Scholar 

  • Terwilliger, N.B., Terwilliger, R.C., Applestein, M., Bonaventura, C., Bonaventura, J.: Subunit structure and oxygen binding by hemocyanin of the isopodLigia exotica. Biochemistry18, 102–108 (1979)

    Google Scholar 

  • Vranckx, R., Durliat, M.: Analyse immunologique des protéines de l'hemolymphe d'Astacus leptodactylus pendant la prémue. C.R. Acad. Sci. Paris, Sér. D282, 1305–1308 (1976)

    Google Scholar 

  • Waxman, L.: The structure of arthropod and mollusc hemocyanin. J. Biol. Chem.250, 3796–3806 (1975)

    Google Scholar 

  • Wibo, M.: Recherches sur les hémocyanines des arthropodes: constantes de sédimentation et aspects morphologiques. Thesis, Université Catholique de Louvain (1966)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markl, J., Hofer, A., Bauer, G. et al. Subunit heterogeneity in arthropod hemocyanins: II. Crustacea. J Comp Physiol B 133, 167–175 (1979). https://doi.org/10.1007/BF00691462

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00691462

Keywords

Navigation