Skip to main content
Log in

Octopaminergic neurons in the locust brain: morphological, biochemical and electrophysiological characterisation of potential modulators of the visual system

  • Original Paper
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The two Protocerebral-Medulla 4 neurons (PM4a and b) in the locust brain have adjacent cell bodies in the medial deutocerebrum. They project through the posterior protocerebrum, forming limited arborisations en route, and enter the lobula and medulla of the ipsilateral optic lobe, where they form extensive, overlapping arborisations. The PM4a and b neurons are octopamine immunoreactive. Their octopamine content (approximately 25 pg per cell) is confirmed by gas chromatography-mass spectrometry; each cell contains approximately 25 pg p-octopamine. Simultaneous intracellular recording from exposed PM4a and b cell bodies reveals that the two cells are physiologically indistinguishable. They receive multimodal sensory inputs. Tactile/mechanosensory stimuli to much of the animal's body and head, acoustic stimuli, and simple visual stimuli all give rise to e.p.s.p.s and action potentials in the PM4 cell body. Simultaneous recording from the cell body in the deutocerebrum and the axon in the lobula demonstrates that action potentials are predominantly initiated in the deutocerebrum and propagate centrifugally, towards the optic lobe. Occasionally, bright light flashes will initiate an action potential in the axon in the optic stalk, which probably propagates bidirectionally: centripetally to the cell body, and centrifugally into the optic lobe. The extensive arborisations in the lobula and medulla are therefore likely to be sites of octopamine release. Because PM4 neurons are octopaminergic, project to the optic lobe, and receive modalities of sensory input known to dishabituate the Descending Contralateral Movement Detector (DCMD) visual interneuron, it is proposed that PM4 neurons are neuromodulatory — mediating dishabituation or arousal of the visual system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bacon JP (1988) Transplantation of sensory neurons in the insect. In: Parnavelas JG, Stern CD, Stirling RV (eds) The making of the nervous system. Oxford University Press, Oxford, pp 248–267

    Google Scholar 

  • Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurones in wholemount preparations. Brain Res 138: 359–363

    Google Scholar 

  • Bacon J, Tyrer M (1978) The tritocerebral commissure giant (TCG): a bimodal interneurone in the locust, Schistocerca gregaria. J Comp Physiol 126: 317–325

    Google Scholar 

  • Bacon JP, Thompson KSJ, Stern M (1995) Activity in octopaminergic neurons arouses the locust brain. In: Elsner N, Menzel R (eds) Learning and memory. Thieme, Stuttgart, p 418

    Google Scholar 

  • Belanger JH, Orchard I (1986) Leydig cells: octopaminergic neurons in the leech. Brain Res 382: 387–391

    Google Scholar 

  • Boyan GS, Williams L, Meier T (1993) Organisation of the commissural fibers in the adult brain of the locust. J Comp Neurol 332: 358–377

    Google Scholar 

  • Bräunig P (1991) Suboesophageal DUM neurons innervate the principal neuropils of the locust brain. Phil Trans R Soc Lond B 332: 221–240

    Google Scholar 

  • Christensen TA, Sherman TG, McCaman, Carlson AD (1983) Presence of octopamine in firefly motor neurons. Neuroscience 9: 183–189

    Google Scholar 

  • Eckert M, Rapus J, Nürnberger A, Penzlin H (1992) A new specific antibody reveals octopamine-like immunoreactivity in cockroach ventral nerve cord. J Comp Neurol 322: 1–15

    Google Scholar 

  • Elekes K, Eckert M, Rapus J (1993) Small sets of putative interneurons are octopamine-immunoreactive in the central nervous system of the pond snail, Lymnaea stagnalis. Brain Res 608: 191–197

    Google Scholar 

  • Erber J, Kloppenburg P, Scheidler A (1993) Neuromodulation by serotonin and octopamine in the honeybee: behaviour, neuranatomy and electrophysiology. Experientia 49: 1073–1083

    Google Scholar 

  • Evans PD, O'Shea M (1978) An octopaminergic neuron modulates neuromuscular transmission in the locust. Nature 270: 257–259

    Google Scholar 

  • Gauglitz S, Stevenson P (1993) Octopamine enhances responsiveness of a locust movement detector interneurone (DCMD). In: Elsner N, Heisenberg M (eds) Gene-Brain-Behaviour. Thieme, Stuttgart, p 608

    Google Scholar 

  • Gewecke M (1979) Central projection of antennal afferents for the flight motor in Locusta migratoria (Orthoptera: Acrididae). Entomologia Generalis 5: 317–320

    Google Scholar 

  • Gewecke M, Hou T (1993) Visual brain neurons in Locusta migratoria. In: Wiese K, Gribakin FG, Popov AV, Renninger G (eds) Sensory systems of arthropods. Birkhäuser, Basel, pp 119–144

    Google Scholar 

  • Gewecke M, Kirschfeld K, Feiler R, (1990) Identification of optic lobe neurons of locusts by video films. Biol Cybern 63: 411–420

    Google Scholar 

  • Hammer M (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366: 59–63

    Google Scholar 

  • Homberg U, Christensen TA, Hildebrand JG (1989) Structure and function of the deutocerebrum in insects. Annu Rev Entomol 34: 477–501

    Google Scholar 

  • Kloppenburg P, Erber J (1995) The modulatory effects of serotonin and octopamine in the visual system of the honey bee (Apis mellifera L.) II. Electrophysiological analysis of motion-sensitive neurons in the lobula. J Comp Physiol A 176: 119–129

    Google Scholar 

  • Konings PNM, Vullings KGB, Geffard M, Buijs RM, Diederen JHB, Jansen WF (1988) Immunocytochemical demonstration of octopamine-immunoreactive cells in the nervous system of Locusta migratoria and Schistocerca gregaria. Cell Tissue Res 251: 371–379

    Google Scholar 

  • MacFarlane RG, Midgley JM, Watson DG, Evans PD (1990) Analysis of biogenic amines in the thoracic nervous system of the locust, Schistocerca gregaria, by gas-chromatography negative chemical ionisation mass spectrometry (GC-NCIMS). Insect Biochem 20: 305–311

    Google Scholar 

  • Orchard I, Lange AB (1985) Evidence for octopaminergic modulation of an insect visceral muscle. J Neurobiol 16: 171–181

    Google Scholar 

  • O'Shea M, Rowell CHF (1975) A spike-transmitting electrical synapse between visual interneurones in the locust movement detector system. J Comp Physiol 97: 143–158

    Google Scholar 

  • O'Shea M, Williams JLD (1974) The anatomy and output connection of a locust visual interneurone: the lobular giant movement detector (LGMD) neurone. J Comp Physiol 91: 257–266

    Google Scholar 

  • Osorio D (1987) The temporal properties of non-linear, transient cells in the locust medulla. J Comp Physiol A 161: 431–440

    Google Scholar 

  • Patel M, Chung JS, Kay I, Mallet AI, Gibbon CR, Thompson KSJ, Bacon JP, Coast GM (1994) Localization of Locusta-DP in locust CNS and haemolymph satisfies initial hormonal criteria. Peptides 15: 591–602

    Google Scholar 

  • Pflüger HJ (1984) The large fourth abdominal intersegmental interneuron: a new type of wind-sensitive ventral cord interneuron in locusts. J Comp Neurol 222: 343–357

    Google Scholar 

  • Ramirez JM, Büschges A, Kittmann R (1993) Octopaminergic modulation of the femoral chordotonal organ in the stick insect. J Comp Physiol A 173: 209–219

    Google Scholar 

  • Rind C (1987) Non-directional movement sensitive neurones of the locust optic lobe. J Comp Physiol A 161: 477–494

    Google Scholar 

  • Roeder T, Nathanson JA (1993) Characterization of insect neuronal octopamine receptors (OA3 receptors). Neurochem Res 18: 921–925

    Google Scholar 

  • Rowell CHF (1971) Variable responsiveness of a visual interneurone in the free-moving locust, and its relation to behaviour and arousal. J Exp Biol 55: 727–747

    Google Scholar 

  • Rowell CHF, O'Shea M, Williams JLD (1977) The neuronal basis of a sensory analyser, the acridid movement detector system. IV. The preference for small field stimuli. J Exp Biol 68: 151–185

    Google Scholar 

  • Sombati S, Hoyle G (1984) Central nervous sensitization and dishabituation of reflex action in an insect by the neuromodulator octopamine. J Neurobiol 15: 455–480

    Google Scholar 

  • Stern M, Gewecke M (1993) Spatial sensitivity profiles of motion sensitive neurons in the locust brain. In: Wiese K, Gribakin FG, Popov AV, Renninger G (eds) Sensory systems of arthropods. Birkhäuser, Basel, pp 184–195

    Google Scholar 

  • Stern M, Thompson KSJ, Gewecke M, Bacon JP (1994) Octopaminergic, centrifugal, multimodal interneurons in the locust brain. In: Elsner N, Breer H (eds) Sensory transduction. Thieme, Stuttgart, p 464

    Google Scholar 

  • Stevenson P, Kutsch W (1986) Basic circuitry of an adult-specific motor program completed within embryogenesis. Naturwissenschaften 73: 741–743

    Google Scholar 

  • Thompson KSJ, Bacon JP (1991) The vasopressin-like immunoreactive (VPLI) neurons of the locust, Locusta migratoria: II. Physiology. J Comp Physiol A 168: 619–630

    Google Scholar 

  • Thompson KSJ, Tyrer NM, May ST, Bacon JP (1991) The vasopressin-like immunoreactive (VPLI) neurons of the locust, Locusta migratoria: I. Anatomy. J Comp Physiol A 168: 605–617

    Google Scholar 

  • Tyrer NM, Bacon JP, Davies CA (1979) Sensory projections from the wind-sensitive head hairs of the locust Schistocerca gregaria. Cell Tissue Res 203: 79–92

    Google Scholar 

  • Wendt B, Homberg U (1992) Immunocytochemistry of dopamine in the brain of the locust Schistocerca gregaria. J Comp Neurol 321: 387–403

    Google Scholar 

  • Williams JLD (1975) Anatomical studies on the insect central nervous system: a ground plan of the mid-brain and an introduction to the central complex in the locust, Schistocerca gregaria (Orthoptera). J Zool Lond 176: 67–86

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stern, M., Thompson, K.S.J., Zhou, P. et al. Octopaminergic neurons in the locust brain: morphological, biochemical and electrophysiological characterisation of potential modulators of the visual system. J Comp Physiol A 177, 611–625 (1995). https://doi.org/10.1007/BF00207190

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00207190

Key words

Navigation