Skip to main content
Log in

Tangential medulla neurons in the mothManduca sexta. Structure and responses to optomotor stimuli

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

InManduca sexta, large tangential cells connect the medulla via the lobula valley (LoV) tract to the midbrain and the contralateral medulla. Tract neurons have been stained and recorded to determine their responses to optomotor stimulation. Neurons in the LoV-tract comprise a physiologically and anatomically heterogeneous population:

  1. 1.

    Motion insensitive medulla tangential (Mt) neurons arise from cell bodies in the ventral rind. Heterolateral cells arborize massively in both medullae and one or both halves of the midbrain. Mt-neurons respond to changes in light intensity. Physiological and anatomical evidence argues for their monocularity and transmission from the medulla on the side of the soma to the central brain and the contralateral medulla.

  2. 2.

    Motion sensitive neurons with cell bodies behind the protocerebral bridge connect the midbrain to the ipsior contralateral medulla. Direction-selective responses are characterized by excitation to motion in the preferred and inhibition in the opposite direction with maxima either in a horizontal or vertical direction. Peak values appear at contrast frequencies of appr. 3/s. The results suggest that these neurons are binocular and relay information from the midbrain to the medulla. They have been labelled as centrifugal medulla tangential (cMt) neurons.

The possible roles for tract neurons in visually guided behaviour are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LoV:

lobula valley

Mt:

medulla tangential

cMt:

centrifugal medulla tangential

sMt:

small medulla tangential

Tmt:

transmedullary tangential

References

  • Baumhover AH, Cantelo WW, Hobgood JM, Knott CM, Lam JJ (1977) An improved method for mass rearing the tobacco hornworm. Agricultural Research Service, USDA ARS-5-167, US Government Printing Office, Washington DC

    Google Scholar 

  • Bausenwein B, Fischbach KF (1992) Activity labeling patterns in the medulla ofDrosophila melanogaster caused by motion stimuli. Cell Tissue Res 270:25–35

    Article  PubMed  CAS  Google Scholar 

  • Bennett RR, White RH (1989) Influence of carotenoid deficiency on visual sensitivity, visual pigment and P-face particles of photoreceptor membrane in the mothManduca sexta. J Comp Physiol A 164:321–331

    Article  Google Scholar 

  • Blest AD, Collett TS (1965) Microelectrode studies of the medial protocerebrum of some Lepidoptera. I. Responses to simple binocular visual stimulation. J Insect Physiol 11:1079–1103

    Article  PubMed  CAS  Google Scholar 

  • Buchner E (1984) Behavioral analysis of spatial vision in insects. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum New York London, pp 561–621

    Google Scholar 

  • Buchner E, Buchner S, Bülthoff I (1984) Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement. I. Wildtype. J Comp Physiol A 155:471–483

    Article  Google Scholar 

  • Cajal SR, Sánchez D (1915) Contribución al conocimiento de los céntros nerviosos de los inséctos. Parte I, rétina y centros ópticos. Trab Lab Invest Biol Univ Madrid 13:1–168

    Google Scholar 

  • Campos-Ortega JA, Strausfeld NJ (1972) Columns and layers in the second synaptic region of the fly's visual system. The case for two superimposed neuronal architectures. In: Wehner R (ed) Information processing in the visual system of arthropods. Springer, Berlin Heidelberg New York, pp 31–36

    Google Scholar 

  • Collett TS (1970) Centripetal and centrifugal visual cells in the medulla of the insect optic lobe. J Neurophysiol 33:239–256

    PubMed  CAS  Google Scholar 

  • Collett TS, Blest DA (1966) Binocular, directionally selective neurones, possibly involved in the optomotor response of insects. Nature 212:1330–1333

    Article  PubMed  CAS  Google Scholar 

  • DeVoe RD, Ockleford EM (1976) Intracellular responses from cells of the medulla of the fly,Calliphora erythrocephala. Biol Cybern 23:13–24

    Article  PubMed  CAS  Google Scholar 

  • Dombrowski UJ (1991) Untersuchungen zur funktionellen Organisation des Flugsystems vonManduca sexta (L.). Doct Dissert, University of Cologne

  • Dombrowski UJ, Milde JJ, Wendler G (1990) Visual control of compensatory head movements in the sphinx moth. In: Gribakin FG, Wiese K, Popov AV (eds.) Sensory systems and communication in arthropods. Birkhäuser, Basel Boston Berlin, pp 127–133

    Google Scholar 

  • Egelhaaf M (1985) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II: Figure-detection cells, a new class of visual interneurons. Biol Cybern 52:195–208

    Google Scholar 

  • Egelhaaf M, Borst A, Reichardt W (1989) Computational structure of a biological motion detection system as revealed by local detector analysis in the fly's nervous system. J Opt Soc Am A 6:1070–1087

    Article  PubMed  CAS  Google Scholar 

  • Fischbach KF, Dittrich APM (1989) The optic lobe ofDrosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:441–475

    Article  Google Scholar 

  • Gilbert C, Strausfeld NJ (1991) The functional organization of male-specific visual neurons in flies. J Comp Physiol A 169:395–411

    Article  PubMed  CAS  Google Scholar 

  • Gilbert C, Penisten DK, DeVoe RD (1991) Discrimination of visual motion from flicker by identified neurons in the medulla of the fleshflySarcophaga bullata. J Comp Physiol A 168:653–673

    Article  PubMed  CAS  Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des RüsselkäfersChlorophanus. Z Naturforsch 11b:513–524

    Google Scholar 

  • Hausen K (1984) The lobula-complex of the fly: Structure, function and significance in visual behavior. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York London, pp 523–559

    Google Scholar 

  • Hausen K, Egelhaaf M (1989) Neural mechanisms of visual course control in insects. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Heidelberg New York, pp 391–424

    Google Scholar 

  • Hertel H, Maronde U (1987) The physiology and morphology of centrally projecting visual interneurones in the honeybee brain. J Exp Biol 133:301–315

    Google Scholar 

  • Hertel H, Schäfer S, Maronde U (1987) The physiology and morphology of visual commissures in the honeybee brain. J Exp Biol 133:283–300

    Google Scholar 

  • Homberg U, Hildebrand JG (1989a) Serotonin-immunoreactive neurons in the median protocerebrum and suboesophageal ganglion of the sphinx mothManduca sexta. Cell Tissue Res 258:1–24

    Article  PubMed  CAS  Google Scholar 

  • Homberg U, Hildebrand JG (1989b) Serotonin-immunoreactivity in the optic lobes of the sphinx mothManduca sexta and colocalization with FMRFamide- and SCPB-immunoreactivity. J Comp Neurol 288:243–253

    Article  PubMed  CAS  Google Scholar 

  • Homberg U, Kingan TG, Hildebrand JG (1987) Immunocytochemistry of GABA in the brain and suboesophageal ganglion ofManduca sexta. Cell Tissue Res 248:1–24

    Article  PubMed  CAS  Google Scholar 

  • Ibbotson MR, Maddess T, DuBois R (1991) A system of insect neurons sensitive to horizontal and vertical image motion connects the medulla and midbrain. J Comp Physiol A 169:355–367

    Article  Google Scholar 

  • Itagaki H, Hildebrand JG (1990) Olfactory interneurons in the brain of the larval sphinx mothManduca sexta. J Comp Physiol A 167:309–320

    Article  PubMed  CAS  Google Scholar 

  • Kelly KM, Mote MI (1990) Electrophysiology and anatomy of medulla interneurons in the optic lobe of the cockroachPeriplaneta americana. J Comp Physiol A 167:745–756

    Article  PubMed  CAS  Google Scholar 

  • Maddess T, Dubois RA, Ibbotson MR (1991) Response properties and adaptation of neurones sensitive to image motion in the butterflyPapilio aegeus. J Exp Biol 161:171–199

    Google Scholar 

  • Milde JJ (1989) Neural basis of head movements evoked by optomotor stimuli in the mothManduca sexta. Soc Neurosci Abstr 15:1290

    Google Scholar 

  • Milde JJ (1991) The role of brain interneurons underlying visual behaviour as revealed by simultaneous recorded muscle activity. In: Elsner N, Penzlin H (eds) Synapse—transmission—modulation. Proc 19th Göttingen Neurobiol Conf, Thieme, Stuttgart New York, p 271

    Google Scholar 

  • Milde JJ, Strausfeld NJ (1990) Cluster organization and response characteristics of the giant fibre pathway of the blowflyCalliphora erythrocephala. J Comp Neurol 294:59–75

    Article  PubMed  CAS  Google Scholar 

  • Milde JJ, Seyan HS, Strausfeld NJ (1987) The neck motor system of the flyCalliphora erythrocephala. II. Sensory organization. J Comp Physiol A 160:225–238

    Article  Google Scholar 

  • Milde JJ, Gronenberg W, Strausfeld NJ (1992) The head-neck system of the blowflyCalliphora: functional organization and comparisons with the sphinx mothManduca sexta. In: Berthoz A, Graf W, Vidal PP (eds) The head-neck sensory motor system. Oxford University Press, New York Oxford, pp 64–70

    Google Scholar 

  • Mimura K (1971) Movement discrimination by the visual system of flies. Z Vergl Physiol 73:105–138

    Article  Google Scholar 

  • O'Shea M, Williams JLD (1974) The anatomy and output connection of a locust visual interneurone; the lobula giant movement detector (LGMD) neurone. J Comp Physiol 91:257–266

    Article  Google Scholar 

  • Osorio D (1986) Directionally selective cells in the locust medulla. J Comp Physiol A 159:841–847

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W (1957) Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems. Z Naturforsch 12b:448–457

    Google Scholar 

  • Rind FC (1987) Non-directional, movement sensitive neurones of the locust optic lobe. J Comp Physiol A 161:477–494

    Article  Google Scholar 

  • Rowell CHF, Reichert H (1986) Three descending interneurons reporting deviation from course in the locust. II. Physiology. J Comp Physiol A 158:775–794

    Article  PubMed  CAS  Google Scholar 

  • Rowell CHF, O'Shea M, Williams JLD (1977) The neuronal basis of a sensory analyser, the acridid movement detector system. IV. The preference for small field stimuli. J Exp Biol 68:157–185

    Google Scholar 

  • Scharstein H (1989) A universal projector for optomotor stimulation. In: Elsner N, Singer W (eds) Dynamics and plasticity in neuronal systems. Proc 17th Göttingen Neurobiol Conf, Thieme, Stuttgart New York, p 116

    Google Scholar 

  • Spurr AR (1969) A low viscosity embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ (1970) Golgi studies on insects. Part II. The optic lobes of Diptera. Phil Trans R Soc London B 258:135–223

    Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Strausfeld NJ (1989) Beneath the compound eye: neuroanatomical analysis and physiological correlates in the study of insect vision. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Heidelberg New York, pp 317–359

    Google Scholar 

  • Strausfeld NJ, Blest AD (1970) Golgi studies on insects. Part I. The optic lobes of Lepidoptera. Phil Trans R Soc London B 258:81–134

    Google Scholar 

  • Strausfeld NJ, Seyan HS (1985) Convergence of visual, haltere and prosternal inputs at neck motor neurons ofCalliphora erythrocephala. Cell Tissue Res 240:601–615

    Article  Google Scholar 

  • Swihart SL (1968) Single unit activity in the visual pathway of the butterflyHeliconius erato. J Insect Physiol 14:1589–1601

    Article  Google Scholar 

  • Wehner R (1981) Spatial vision in insects. In: Autrum H (ed) Handbook of sensory physiology, vol VII/6C. springer, Berlin Heidelberg New York, pp 287–616

    Google Scholar 

  • Wendler G, Müller M, Dombrowski U (1993) The activity of pleurodorsal muscles during flight and rest in the mothManduca sexta (L.). J Comp Physiol A 173:65–75

    Google Scholar 

  • Williams JLD (1975) Anatomical studies of the insect central nervous system, a ground-plan of the mid-brain and an introduction to the central complex in the locustSchistocerca gregaria (Orthoptera). J Zool (Lond) 176:67–86

    Article  Google Scholar 

  • Willis MA, Arbas EA (1991) Odor-modulated upwind flight of the sphinx moth,Manduca sexta L. J Comp Physiol A 169:427–440

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milde, J.J. Tangential medulla neurons in the mothManduca sexta. Structure and responses to optomotor stimuli. J. Comp. Physiol. 173, 783–799 (1993). https://doi.org/10.1007/BF02451909

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02451909

Key words

Navigation