Skip to main content
Log in

Estimation of velocity eigenfunction and vorticity distributions from the timeline visualization technique

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

For the case of quasi-periodic flow, it is demonstrated that use of the hydrogen bubble timeline method leads to reasonable estimates of the eigenfunction of the streamwise velocity fluctuation. Both amplitude and phase distributions across an unstable wake flow are well-approximated. It is shown that the vorticity extrema, as well as the degree of concentration of vorticity, are in good agreement with those calculated from linear stability theory. A critical assessment is given of the possible uncertainties associated with this technique: the existence of a finite, but unknown cross-stream velocity component; bubble rise due to buoyancy effects; wake defect created downstream of the bubble wire; and resolution of the digitized image. Furthermore, the uncertainty in the streamwise velocity, arising from existence of a finite cross-stream velocity component, is actually less than that corresponding to a single-element hot film probe over certain regimes of operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abernathy, F. H.; Bertschy, J. R.; Chen, R. W. 1977: Turbulence spectra using laser-Doppler anemometry and selected seeding. Proceedings of 5th Symposium on Turbulence (eds. Patterson, G. K.; Zakin, J. L.) pp. 133–142. University of Missouri-Rolla

  • Betchov, R.; Criminale, W. O. 1967: Stability of parallel flows. New York: Academic Press

    Google Scholar 

  • Bradshaw, P. 1971: An introduction to turbulence and its measurement. New York: Pergamon Press

    Google Scholar 

  • Grass, A. J. 1971: Structural features of turbulent flow over smooth and rough boundaries. J. Fluid Mech. 50, 223–255

    Google Scholar 

  • Gumas, C.; Rockwell, D. 1986: The Fourier descriptor technique: A means of pattern recognition in fluid mechanics. (To be submitted for publication)

  • Lu, L.-J.; Smith, C. 1986: Image processing of hydrogen bubble flow visualization for determination of turbulence statistics and bursting characteristics. Exp. Fluids 3, 349–356

    Google Scholar 

  • Lusseyran, D.; Rockwell, D. 1986: On interpretation of flow-visualization in unsteady shear flows. Unpublished report available from Dept. of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem/Pa, USA

    Google Scholar 

  • Mattingly, G. E.; Criminale, W. O. 1972: The stability of an incompressible two-dimensional wake. J. Fluid Mech. 51, 233–273

    Google Scholar 

  • Ongoren, A.; Chen, J.; Rockwell, D. 1988: Multiple-time-surfacc characterization of time-dependent, three-dimensional flows. (Submitted to) Exp. Fluids

  • Schraub, F. A.; Kline, S. J.; Henry, J.; Runstadtler, P. W.; Littell, A. 1965: Use of hydrogen bubbles for quantitative determination of time-dependent velocity fields in low-speed water flows. J. Basic Eng. 7, 429–444

    Google Scholar 

  • Smith, C. R.; Paxson, R. D. 1983: The technique for evaluation of three-dimensional behavior in turbulent boundary layers using computer augmented hydrogen bubble-wire flow visualization. Exp. Fluids 1, 43–49

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lusseyran, D., Rockwell, D. Estimation of velocity eigenfunction and vorticity distributions from the timeline visualization technique. Experiments in Fluids 6, 228–236 (1988). https://doi.org/10.1007/BF00187362

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00187362

Keywords

Navigation