Skip to main content
Log in

The role of flow visualization in the study of afterbody and base flows

A review

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The role of the flow visualization in providing the necessary insight for the development of theoretical models of complex afterbody and base flows is described. Methods of calculating the turbulent base pressure for axisymmetric configurations are discussed. Emphasis is placed on the treatment of supersonic flows for cylindrical, boattail, and flare bodies as well as sharp and blunt cones and base flow nozzles. The guidance provided by flow visualization in the development of theoretical models for the transonic case is also discussed. The current interests in applying finite difference techniques to these-problems indicate that the extensive use of flow visualization data will continue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrell, J.; White, R. A. 1974: An experimental investigation of supersonic axisymmetric flow over boattails containing a centered propulsive jet. FFA Tech. Note AU-913

  • Badrinarayanan, M. A. 1961: An experimental investigation of base flows at supersonic speeds. J. Roy. Aero. Sec. 65, 475–482

    Google Scholar 

  • Brink, D. F.; Chow, W. L. 1975: Two-Dimension jet mixing with a pressure gradient. J. Appl. Mech. (ASME) 42, 55–60

    Google Scholar 

  • Cassanto, J. M. 1968: Base pressure results at M=4, using freeflight and sting-supported models. AIAA J. 6, 1411–1414

    Google Scholar 

  • Chapman, D. R. 1951: An analysis of base pressure at supersonic velocities and comparison with experiments. Rept. 1051, NACA, Washington, D.C.

    Google Scholar 

  • Chow, W. L.; Bober, L. J.; Anderson, B. H. 1975: Strong interaction associated with transonic flow past boattails. AIAA J. 13; 112–113

    Google Scholar 

  • Chow, W. L.; Bober, L. J.; Anderson, B. H. 1975: Numerical calculation of transonic boattail flow. NASA TN D-7984

  • Chow, W. L. 1984: Base pressure of a projectile within the transonic flight regime. AIAA Paper 84-0230

  • Dash, S. M.; Pergament, H. S.; Thorpe, R. D. 1979: A modular approach for the coupling of viscous and inviscid processes in exhaust plume flows. AIAA Paper 79-0150

  • Deiwert, G. S. 1984: Private Communication

  • Deiwert, G. S. 1983: A computational investigation of supersonic axisymmetric flow over boattails containing a centered propulsive jet. AIAA Paper 83-0462

  • Deiwert, G. S. 1982: Topological analysis of computed threedimensional viscous flow fields. Recent Contributions to Fluid Mechanics, pp. 40–49. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Deiwert, G. S. 1981: Numerical simulation of three-dimensional boattail afterbody flowfields. AIAA J. 19, 582–588

    Google Scholar 

  • Delery, J. M. 1983: ONERA Research on afterbody viscid/inviscid interaction with special emphasis on base flows. Proc. of the Symposium on Rocket/Plume Fluid Dynamic Interactions, Vol. 3 Flow fields, Fluid Dynamics Laboratories Rep. 83-104, US Army Research Office and University of Texas at Austin

  • Greenwood, G, H. 1966: Measurements of drag, base pressure and base aerodynamic heat transfer appropriate to 8.5° semi-angle sharp cones in free flight at mach numbers from 0.8 to 3.8. Royal Aircraft Establishment RAE TR 66394

  • Hartree, D. R. 1958: Numerical Analysis. Chapter X, pp. 257–263, 2nd ed., London: Oxford University Press

    Google Scholar 

  • Korst, H. H.; White, R. A. 1980: Internal and external ballistics of missiles with special consideration of jet-plume interference effects during launch and free flight phases. Final Rep. University of Illinois, U-C Eng 80-4007, Grant DAAG-29-76-G-0209

  • Korst, H. H. 1956: A theory for base pressures in transonic and supersonic flow. J. Appl. Mech. (ASME) 23, 593–600

    Google Scholar 

  • Lomax, H.; Inouye, M. 1964: Numerical analysis of flow properties about blunt bodies moving at supersonic speeds in an equilibrium gas. NASA TR R-204

  • Love, E. S. 1957: Base pressure at supersonic speeds on two-dimensional airfoils and on bodies of revolution with and without fins having turbulent boundary layers. NACA TN-3819, Washington, D.C.

  • Mach, E. 1923: Über Erscheinungen an fliegenden Projektilen. Popularwiss. Vorlesungen, 5. Aufl. pp. 356–383, Leipzig

    Google Scholar 

  • Merzkirch, W. 1970: Mach's contribution to the development of gasdynamics. In Boston Studies in the Philosophy of Science 6, pp. 42–59. Dordrecht: Reidel

    Google Scholar 

  • Minyatov, A. V. 1961: Raschet Donnogo Davleniya v Sverkhzvukovom Potoke Obekayushchem Telo Vrashcheniya. (Calculation of the base pressure in the supersonic flow about a body of revolution). Mekhanika i Mashinostroeme, Izvestia Akademii Nauk U.S.S.R., Otdelenie Tekhnicheskikh Nauk, 3, 32–39

    Google Scholar 

  • Moretti, G.; Abbett, M. 1966: A time-dependent computational method for blunt body flows. AIAA J. 4, 2136–2141

    Google Scholar 

  • Mueller, T. J.; Kayser, L. D. 1981: A method of determining the turbulent base pressure in uniform and non-uniform supersonic axisymmetric flows. Technical Report ARBRL-TR02374. U.S. Army Ballistic Research Laboratory, Aberdeen, Maryland

    Google Scholar 

  • Mueller, T. J.; Hall, C. R., Jr.; Roache, P. J. 1970: Influence of initial flow direction on the turbulent base pressure in supersonic axisymmetric flow. J. Spacecraft Rockets (AIAA) 7, 1484–1488

    Google Scholar 

  • Mueller, T. J. 1968: Determination of the turbulent base pressure in supersonic axisymmetric flow. J. Spacecraft Rockets (AIAA) 5, 101–107

    Google Scholar 

  • Mueller, T. J.; Chin, Y. T. 1965: Base pressure analysis for annular plug nozzles. Rept. D210889-9, United Aircraft Research Laboratories

  • Reichenbach, H. 1983: Contribution of Ernst Mach to Fluid Mechanics. Ann. Rev. Fluid Mechanics 15, 1–28

    Google Scholar 

  • Reid, J.; Hastings, R. C. 1959: Experiments of the axi-symmetric flow over afterbodies and bases at M=2.0. Royal Aircraft Establishment Report No. Aero. 2628

  • Reynolds, O. 1883: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. Roy. Soc. 174, 935–982

    Google Scholar 

  • Roache, P. J. 1973: Base drag calculations in supersonic turbulent axisymmetric flows. J. Spacecraft Rockets (AIAA) 10, 285–287

    Google Scholar 

  • Sahu, J.; Nietubicz, C. J.; Steger, L. J. 1983: “Navier-Stokes computations of projectile base flow with and without base injection. AIAA Paper 83-0224

  • Sahu, J.; Nietubicz, C. J.; Steger, J. L. 1982: Numerical computation of base flow for a projectile at transonic speeds, AIAA Paper 82-1358

  • Sule, W. P.; Mueller, T. J. 1973: Annular truncated plug nozzle flowfield and base pressure characteristics. J. Spacecraft Rockets (AIAA) 10, 689–695

    Google Scholar 

  • Toepler, A. 1864: Beobachtungen nach einer neuen optischen Methode. Bonn: Max Cohen

    Google Scholar 

  • Valentine, D. T.; Przirembel, C. E. G. 1970: Turbulent axisymmetric near-wake at mach four with base injection. AIAA J. 8, 2279–2280

    Google Scholar 

  • Wagner, B. 1984: Calculation of turbulent flow about missile afterbodies containing an exhaust jet. AIAA Paper 84-1659

  • Weinberg, B. C.; McDonald, H.; Shamroth, S. J. 1982: Navier-Stokes computations of aft end flow fields. Final Report under Contract DAAG29-79-C-0003, U.S. Army Research Office

  • Whitfield, J. D.; Potter, J. L. 1960: On base pressures at high Reynolds numbers and hypersonic mach numbers. Arnold Engineering Development Center, AEDC TN 60–61

  • Zarin, N. A. 1966: Base pressure measurements on sharp and blunt 9° cones at mach numbers from 3.50 to 9.20. AIAA J. 4, 743–745

    Google Scholar 

  • Zumwalt, G. W. 1959: Analytical and experimental study of the axially-symmetric supersonic base pressure problem. Ph.D. Dissertation, University of Illinois

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, T.J. The role of flow visualization in the study of afterbody and base flows. Experiments in Fluids 3, 61–70 (1985). https://doi.org/10.1007/BF00276711

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00276711

Keywords

Navigation