Skip to main content
Log in

The measurement of flow-induced surface displacement on a compliant surface by optical holographic interferometry

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Flow-induced surface displacements that form on a singlelayer passive isotropic viscoelastic compliant surface as a result of the interaction with a turbulent boundary layer are measured by non-intrusive optical holographic interferometry in connection with an interactive fringe-processing system. The purpose for developing this method is to obtain the instantaneous topographic features of a whole field of the displacements of the compliant surface. Information about dimensions of the “foot prints” of the turbulence on the compliant surface are obtained in the form of line contours and isometric phase maps. These experimental data are essential in order to determine statistical measures of the random topography of the compliant surface. Furthermore, by coupling with the simultaneous measurements of the turbulence field, the physics of the alteration of the turbulent boundary layer by the undulating surface can then be better understood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

light amplitude

A 0 :

light amplitude of object beam

A r :

light amplitude of reference beam

c :

light speed

d e :

diameter of laser beam

d p :

diameter of pinhole

d s :

spatial frequency

E :

exposure energy

f :

focal length

I in :

light intensity at photographic plate

I 0 :

light intensity of object beam

I r :

light intensity of reference beam

k :

wave number, 2 π/λ

L in :

light amplitude records on the emulsion surface

L 0 :

light ray of object beam

L r :

light ray of reference beam

R θ :

Reynolds number based on momentum thickness, V θ/ν

t :

time

t e :

exposure time

T 0 :

uniform background light transmittance

T re :

reconstructed light through hologram

T t :

amplitude transmittance of hologram

V :

freestream flow speed

ω :

radian frequency, k c

x :

distance from the leading edge of the flat plate

z :

position

β :

slope

δ :

optical path difference

φ :

phase

φ 0 :

phase of object beam

φ r :

phase of reference beam

λ :

wavelength

θ :

momentum thickness

θ 0 :

angle between the object beam with respect to the normal of the photographic plate

θ r :

angle between the reference beam with respect to the normal of the photographic plate

ν :

kinematic viscosity of water

References

  • Archbold, E.; Burch, J. M.; Ennos, A. E. 1967: The application of holography to the comparison of cylinder bores. Journal of Physics E.: Scientific Instruments 44, 489–494

    Google Scholar 

  • Breuckmann, B.; Thieme, W. 1985: Computer-aided analysis of holographic interferograms using the phase-shift method. Applied Optics 24, 2145–2150

    Google Scholar 

  • Bushnell, D. M.; Hefner, J. N. 1977: Effect of compliant wall motion on turbulent boundary layers. Physics of Fluids 20, S31-S48

    Google Scholar 

  • Butters, J. N.; Leenderz, J. A. 1971: Speckle pattern and holographic techniques in engineering metrology. Optics and Laser Technology 3, 26

    Google Scholar 

  • Coolier, R. J.; Burckhardt, C. B.; Lin, L. H. 1971: Optical holography. San Diego: Academic Press

    Google Scholar 

  • Creath, K. 1985: Phase-shifting speckle interferometry. Applied Optics 24, 3053–3058

    Google Scholar 

  • Dhir, S. K.; Sikora, J. P. 1972: An improved method for obtaining the general-displacement field from a holographic interferogram. Experimental Mechanics 12, 323–327

    Google Scholar 

  • Dudderar, T. D. 1969: Applications of holography to fracture mechanics. Experimental Mechanics 9, 281–285

    Google Scholar 

  • Duncan, J. H.; Waxman, A. M.; Tulin, M. P. 1985: The dynamics of waves at the inferface between a viscoelastic coating and a fluid flow. J. Fluid Mechanics 158, 177–197

    Google Scholar 

  • Duncan, J. H. 1986: The response of an incompressible, viscoelastic coating to pressure fluctuations in a turbulent boundary layer. J. Fluid Mechanics 171, 339–363

    Google Scholar 

  • Ennos, A. E. 1968: Measurement of in-plane surface strain by hologram interferometry. J. Physics E: Scientific Instruments 1, 731–734

    Google Scholar 

  • FAST 1987: Phase Shift Technology, 1430 East Fort Lowell, Tucson, AZ 85719

  • Funnel, W. R. J. 1981: Image processing applied to the interactive analysis of interferometric fringes. Applied Optics 20, 3245–3250

    Google Scholar 

  • Gabor D. 1948: A new microscope principle. Nature 161, 777–778

    Google Scholar 

  • Gad-el-Hak, M.; Blackwelder, R. F.; Riley, J. J. 1984: On the interaction of compliant coating with boundary-layer flows. J. Fluid Mechanics 140, 257–280

    Google Scholar 

  • Gad-el-Hak, M. 1986: The response of elastic and viscoelastic surfaces to a turbulent boundary layer. J. Applied Mechanics 53, 206–212

    Google Scholar 

  • Garrad, A. D.; Carpenter, P. W. 1982: A theoretical investigation of flow induced instabilities in compliant coating. J. Sound and Vibration 85, 483–500

    Google Scholar 

  • Gaster, M. 1985: Growth of instability waves over compliant coating. Bull. Amer. Phys. Soc. 30, 1708

    Google Scholar 

  • Haines, K. A.; Hildebrand, B. P. 1966: Surface-deformation measurement using the wavefront reconstruction method. Applied Optics 5, 595–602

    Google Scholar 

  • Hansen, R. J.; Hunston, D. L. 1974: An experimental study of turbulent flows over compliant surfaces. J. Sound and Vibration 34, 297–308

    Google Scholar 

  • Hansen, R. J.; Hunston, D. L.; Ni, C. C.; Reischman, M. M. 1980: An experimental study of flow-generated waves on a flexible surface. J. Sound and Vibration 68, 317–334

    Google Scholar 

  • Hariharan, P.; Ramprasad, B. S. 1973: Rapid in situ processing for real-time holographic interferometry. J. Physics E.: Scientific Instruments 6, 699–701

    Google Scholar 

  • Hariharan, P.; Oreb, B. F.; Brown, N. 1982: A digital phase-measurement system for real-time holographic interferometry. Optics Communication 41, 393–396

    Google Scholar 

  • Hariharan, P. 1984: Optical holography: Principles, techniques and applications. New York: Cambridge University Press

    Google Scholar 

  • Hess, D. E.; Peattie, R. A.; Schwarz, W. H. 1991: A non-intrusive method for the measurement of flow-induced surface displacement of a compliant surface. Accepted for publication in Exp. Fluids

  • Kramer, M. O. 1957: Boundary layer stabilization by distributed damping. J. Aeronautical Sciences 41, 259–281

    Google Scholar 

  • Landahl, M. T. 1962: On the stability of a laminar incompressible oundary layer over a flexible surface. J. Fluid Mechanics 13, 609–632

    Google Scholar 

  • Lanzel, F.; Schluter, M. 1977: Video-electronic analysis of holographic interferograms. Proc. of Society of Photo-Optic Instrument Engineering 136, 166

    Google Scholar 

  • Leith, E. N.; Upatnieks, J. 1963: Wavefront reconstruction with continuous-tone objects. Journal of Optical Society of America 53, 1377

    Google Scholar 

  • McMichael, J.; Klebanoff, P. S.; Mease, N. 1979: Experimental investigation of drag on a compliant surface. In: Viscous flow drag reduction (edited by Hough, G. R.), 410–418

  • Nakadate, S.; Yatagal, T.; Saito, H. 1983: Computer-aided speckle pattern interferometry. Applied Optics 22, 237–243

    Google Scholar 

  • Pryputniewicz, R. J.; Bowley, W. W. 1978: Techniques of holographic displacement measurement: an experimental comparison. Applied Optics 17, 1748–1756

    Google Scholar 

  • Riley, J. J.; Gad-el-Hak, M.; Metcalf, E. W. 1988: Compliant coating. Annual Review of Fluid Mechanics 20, 393–420

    Google Scholar 

  • Seguchi, Y.; Tomita, Y.; Watanabe, M. 1979: Computer-aided fringe-pattern analyzer — a case of photoelastic fringe. Experimental Mechanics 19, 362–370

    Google Scholar 

  • Sollid, J. E. 1969: Holographic interferometry applied to measurements of small static displacements of diffusively reflecting surfaces. Applied Optics 8, 1587–1595

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, T., Fisher, M. & Schwarz, W.H. The measurement of flow-induced surface displacement on a compliant surface by optical holographic interferometry. Experiments in Fluids 14, 159–168 (1993). https://doi.org/10.1007/BF00189506

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00189506

Keywords

Navigation