Skip to main content
Log in

Photoemission of spinpolarized electrons from strained GaAsP

  • Rapid Communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Strained layer GaAs.95P.05 photo cathodes are presented, which emit electron beams spinpolarized to a degree of P = 75% typically. Quantum yields around QE = 0.4% are observed routinely. The figure of merit P2 × QE = 2.3 × 10−3 is comparable to that of the best strained layer cathodes reported in literature. The optimum wavelength of irradiating light around 830 nm is in convenient reach of Ti:sapphire lasers or diode lasers respectively. The cathodes are produced using MOCVD-techniques. A GaAs.55P.45-GaAs.85P.15 superlattice structure prevents the migration of dislocations from the substrate and bottom layers to the strained overlayer. The surface is protected by an arsenic layer so that no chemical cleaning is necessary before installation into vacuum. The source of polarized electrons attached to the Mainz race track microtron MAMI works with such cathodes now. More than 1000 hours beamtime have been performed successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. J. Kirschner,Polarized electrons at surfaces. Springer, 1985.

  2. J. Keßler,Polarized electrons. Springer, 1985.

  3. M. Meyerhoff, D. Eyl, A. Frey, H. G. Andresen, J. R. M. Armand, K. Aulenbacher, J. Becker, J. Blume-Werry, T. Dombo, P. Drescher, J. E. Ducret, H. Fischer, P. Grabmayr, S. Hall, P. Hartmann, T. Hehl, W. Heil, J. Hoffmann, J. D. Kellie, F. Klein, M. Leduc, H. Möller, C. Nachtigall, M. Ostrick, E. W. Otten, R. O. Owens, S. Plützer, E. Reichert, D. Rohe, M. Schäfer, L. D. Schearer, H. Schmieden, K.-H. Steffens, R. Surkau, and T. Walcher: Phys. Lett. B,327, 201 (1994)

    Google Scholar 

  4. P.L. Anthoney et al. SLAC E142 Collaboration: Phys. Rev. Lett.71, 959 (1993)

    Google Scholar 

  5. K. Abe et al. SLAC E143 Collaboration: Phys. Rev. Lett.75, 25 (1995)

    Google Scholar 

  6. E. Garwin, D. T. Pierce, and H. C. Siegmann: Helv. Phys. Acta47, 393 (1974)

    Google Scholar 

  7. D. T. Pierce, F. Meier, and P. Zürcher: Appl. Phys. Letters26, 670 (1975)

    Google Scholar 

  8. D. T. Pierce and F. Meier: Phys. Rev. B13, 5484 (1976)

    Google Scholar 

  9. G. Lampel and C. Weisbuch: Solid state Com.16, 877 (1975)

    Google Scholar 

  10. C. K. Sinclair inAIP Conf. Proc. 35, 1976.

  11. D. T. Pierce, R. J. Celotta, G. C. Wang, W. N. Unertl, A. Galejs, C. E. Kuyatt, and S. R. Mielczarek: Rev. Sci. Instrum.51, 478 (1980)

    Google Scholar 

  12. U. Kolac, M. Donath, K. Ertl, H. Liebl, and V. Dose: Rev. Sci. Instrum.59, 1933 (1988)

    Google Scholar 

  13. G. D. Cates, V. W. Hughes, R. Michaels, H. R. Schäfer, T. J. Gay, M. S. Lubell, R. Wilson, G. W. Dodson, K. A. Dow, S. B. Kowalski, K. Isakovich, K. S. Kumar, M. E. Schulze, P. A. Souder, and D. H. Kim: Nucl. Instr. Meth.A278, 293 (1989)

    Google Scholar 

  14. W. Hartmann, D. Conrath, W. Gasteyer, H.-J. Gessinger, W. Heil, H. Kessler, L. Koch, E. Reichert, H. G. Andresen, T. Kenner, B. Wagner, J. Ahrens, J. Jethwa, and F. P. Schäfer: Nucl. Instr. and Meth.A286, 1 (1990)

    Google Scholar 

  15. R. Alley, H. Aoyagi, J. Clendenin, J. Frisch, C.. Garden, E. Hoyt, R. Kirby, L. Klaisner, A. Kulikov, R. Miller, G. Mulhollan, C. Prescott, P. Sáez, D. Schultz, H. Tang, J. Turner, K. Witte, M. Woods, A. D. Yeremian, and M. Zolotorev: Nucl. Instr. and Meth.A365, 1 (1995)

    Google Scholar 

  16. D. T. Pierce, “Spin-polarized electron sources,” inExperimental Methods in the Physical Sciences, Vol. 29 A (R. Celotta and T. Lucatorto, eds.), (New York, London, Toronto, Sydney, San Francisco), p. 1, Academic Press, 1995.

    Google Scholar 

  17. M. Chatwell, J. Clendenin, T. Maruyama, and D. Schultz, eds.,SLAC pub-432: Proceedings of the Workshop on Photocathodes for Polarized Electron Sources for Accelerators, Stanford, 1993, (Stanford, California), Stanford Linear Accelerator Center, 1994.

    Google Scholar 

  18. T. Maruyama, E. L. Garwin, R. Prepost, G. H. Zapalac, J. S. Smith, and J. D. Walker: Phys. Rev. Lett.66, 2376 (1991)

    Google Scholar 

  19. T. Nakanishi, H. Aoyagi, H. Horinaka, Y. Kamiya, T. Kato, S. Nakamura, T. Saka, and M. Tsubata: Phys. Lett. A158, 345 (1991)

    Google Scholar 

  20. T. Maruyama, E. L. Garwin, R. Prepost, and G. H. Zapalac: Phys. Rev. B46, 4261 (1992)

    Google Scholar 

  21. F. Meier, J. C. Gröbli, D. Guarisco, A. Vaterlaus, Y. Yashin, Y. Mamaev, B. Yavich, and I. Kochnev: Physica ScriptaT49, 574 (1993)

    Google Scholar 

  22. V. Alperovich, Y. Bolkhovityanov, A. Paulish, and A. Terekhov, Nucl. Instr. and Meth.A340, 429 (1994)

    Google Scholar 

  23. Y. A. Mamaev, J. C. Gröbli, B. S. Yavich, Y. P. Yashin, F. Meier, A. V. Subashiev, N. N. Faleev, M. S. Galaktianov, D. Guarisco, I. V. Kochnev, S. A. Starovoitov, A. Vaterlaus, E. Reichert, and S. Phitzer, “Spinpolarized photoemission from InGaAs, AlGalnAs, GaAs, and GaAsP,” inProceedings of the Workshop on Photocathodes for Polarized Electron Sources for Accelerators, Stanford, September 8–10, 1993; SLAC-report 432 (M. Chatwell, J. Clendenin, T. Maruyama, and D. Schultz, eds.), (Stanford, USA), pp. 157–173, SLAC, 1994.

    Google Scholar 

  24. T. Omori, Y. Kurihari, T. Nakanishi, H. Aoyagi, T. Baba, T. Furuya, K. Itoga, M. Mizuta, S. Nakamura, Y. Takeuchi, M. Tsubata, and M. Yoshioka: Phys. Rev. Lett.67, 3294 (1991)

    Google Scholar 

  25. B. Leuer, C. G. Baum, L. Grau, R. Niemeyer, W. Raith, and M. Tondera: Z. Phys. D33, 39 (1995)

    Google Scholar 

  26. H. Herminghaus: Nucl. Instr. Meth.138, 1 (1976)

    Google Scholar 

  27. E. Reichert, “Sources of polarized electrons.,” inProceedings of the International Workshop on Polarized Beams and Polarized Gas Targets, Köln, 1995 (H. P. gen. Schick and S. Sydow, eds.), 1995.

  28. Y. A. Mamaev, Y. P. Yashin, A. V. Subashiev, M. S. Galaktionov, B. S. Yavich, O. V. Kovalenkov, D. A. Vinokurov, and N. N. Faleev: Phys. Low-Dim. Struct.7, 27 (1994)

    Google Scholar 

  29. G. Fishman and G. Lampel: Phys. Rev. B16, 820 (1977)

    Google Scholar 

  30. R. Bell,Negative electron affinity devices. Clarendon, 1973.

  31. K. Jost: J. Phys. E: Sci. Instrum.12, 1006 (1979)

    Google Scholar 

  32. V. Bargman, L. Michel, and V. L. Telegdi: Phys. Rev. Lett.2, 435 (1959)

    Google Scholar 

  33. L. G. Gray, M. W. Hart, F. B. Dunning, and G. K. Walters: Rev. Sci. Instrum.55, 88 (1984)

    Google Scholar 

  34. T. J. Gay, M. A. Khakoo, J. A. Brand, J. E. Furst, W. V. Meyer, and F. B. Dunning: Rev. Sci. Instrum.63, 114 (1992)

    Google Scholar 

  35. T. J. Gay and F. B. Dunning: Rev. Sci. Instrum.63, 1635 (1992)

    Google Scholar 

  36. B. Sauer: Diplomarbeit, Institut für Physik der Joh. Gutenberg Universität Mainz, 1995.

  37. A. Subashiev, “Spin-polarized electron photocathode based on InGaP - GaAs superlattices,” inProceedings of Intern. Semicond. Dev. Res. Symp., Charlottesville, USA, December 1995.

  38. R. A. Mair, R. Prepost, H. Tang, E. L. Garwin, T. Maruyama, and G. Mulhollan: Phys. Lett. A212, 231 (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drescher, P., Andresen, H.G., Aulenbacher, K. et al. Photoemission of spinpolarized electrons from strained GaAsP. Appl. Phys. A 63, 203–206 (1996). https://doi.org/10.1007/BF01567651

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01567651

PACS

Navigation