Skip to main content
Log in

CuGaSe2 solar cells with 9.7% power conversion efficiency

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Heterojunctions, such as ZnO/CdS/CuGaSe2, were fabricated for photovoltaic applications. Optimization of device structures based on monocrystalline CuGaSe2 led to the highest-to-date power conversion efficiencies for CuGaSe2 solar cells. At room temperature under 100 mW/cm2 AM1.5 illumination a maximum cell efficiency of 9.7% was achieved, given by an open-circuit voltage of 946 mV, a short circuit current density of 15.5 mA/cm2, and a fill factor of 66.5%. Preparation and performance of the optimum device are described. Current voltage characteristics dependent on illumination intensity and temperature, spectral response and electron-beam-induced current measurements were performed to determine the device parameters as well as to analyse the current transport and loss mechanisms. Tunneling, assisted by defect levels in the CdS layer, seems to play a major role. High injection effects are observed at forward bias ofV > 0.5 V or an illumination level ofP > 10 mW/cm2. Under such conditions, as well as at low temperatures, the non-zero series resistance comes into play. Effects of the shunt resistance, however, are negligible in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Stankiewicz, W. Giriat: Appl. Phys. Lett.35, 70 (1979)

    Google Scholar 

  2. N. Romeo, G. Sberveglieri, L. Tarricone, C. Paorici: Appl. Phys. Lett.30, 108 (1977)

    Google Scholar 

  3. W. Simon: Konstanzer Dissertationen 424, Hartung-Gorre Verlag, Konstanz, ISBN 3-89191-789-9 (1994)

  4. M. Saad, W. Simon, K. Friemelt, H. Riazi-Nejad, E. Bucher, M. Ch. Lux-Steiner: InProc. 12th European Conf. PVSEC, Amsterdam, The Netherlands (1994) p. 1546

  5. M. Saad, H. Riazi-Nejad, E. Bucher, M. Ch. Lux-Steiner: InProc. 1st World Conf. on PVEC, Hawaii, USA (1994) p. 412

  6. K.T.R. Reddy, P.J. Reddy: Mater. Lett.10, 275 (1990)

    Google Scholar 

  7. M. Mehlin, J. Rimmasch, H.P. Fritz: Z. Naturforsch.49b, 1597 (1994)

    Google Scholar 

  8. W. Arndt, H. Dittrich, F. Pfisterer, H.W. Schock: InProc. 6th PVSEC (Kluwer, Dordrecht 1985) p. 260

    Google Scholar 

  9. B. Dimmler, H. Dittrich, R. Menner, H.W. Schock: InProc. 19th IEEE PVSEC (IEEE, New York 1987) p. 1454

    Google Scholar 

  10. K.T.R. Reddy, P.J. Reddy: Thin Solid Films253, 238 (1994)

    Google Scholar 

  11. R. Klenk, R. Mauch, R. Schäffler, D. Schmid, H.W. Schock:In Proc. 22nd IEEE PVSEC (IEEE, New York 1991) p. 1071

    Google Scholar 

  12. C.H. Henry: J. Appl. Phys.51, 4494 (1980)

    Google Scholar 

  13. M. Ch. Lux-Steiner: Synthese, optoelektronische Eigenschaften und Anwendungen neuer Halbleiterkristalle. Habilitation, Universität Konstanz (1991)

  14. D. Lincot, R.O. Borges: J. Electrochem. Soc.139, 1880 (1992)

    Google Scholar 

  15. A.L. Fahrenbruch, R.H. Bube:Fundamentals of Solar Cells (Academic, New York 1983)

    Google Scholar 

  16. S. Kunzelmann, K. Bücher:ISE PV-Charts, Edn. 4 (Fraunhofer-Institute for Solar Energy Systems, Freiburg, Germany 1994)

    Google Scholar 

  17. M. Quintero, C. Rincon, P. Grima: J. Appl. Phys.65, 2739 (1989)

    Google Scholar 

  18. C.J. Wu, D.B. Wittry: J. Appl. Phys.49, 2827 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saad, M., Riazi, H., Bucher, E. et al. CuGaSe2 solar cells with 9.7% power conversion efficiency. Appl. Phys. A 62, 181–185 (1996). https://doi.org/10.1007/BF01575717

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01575717

PACS

Navigation