Skip to main content
Log in

Gene transfer in plants of Brassica juncea using Agrobacterium tumefaciens-mediated transformation

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

An efficient system for gene transfer into plants of Brassica juncea var. India Mustard, mediated by Agrobacterium tumefaciens. was developed through the manipulation of the culture medium and the use of the appropriate Agrobacterium strain. High frequency shoot regeneration (90–100%) was obtained from hypocotyl explants grown on medium containing 0.9% agarose, 3.3 mg/L AgNO3 and 0.5–2 mg/L BA in combination with 0.01–0.05 mg/L 2,4-D or 0.1–1 mg/L NAA. Of all the Agrobacterium strains tested, A. tumefaciens A208-SE, carrying the disarmed Ti plasmid and a binary vector pROA93, was the most effective for B. juncea transformation. pROA93 carries the coding sequences of the NPTII and the GUS genes, both driven by a common CaMV 35S promoter in two divergent directions. Inoculated explants grown on the selection medium in the presence of 0.5 mg/L BA and 0.1 mg/L NAA gave rise to transgenic shoots at the highest frequency (9%). All Ro transgenic plants were phenotypically normal, but variation in expression patterns of the GUS gene occurred among the transgenic plants in an organ- and tissue-specific manner. Both the NPTII and the GUS genes were transmitted to the R1 seed progeny and showed co-segregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BA:

benzyladenine

2,4-D:

2,4-dichlorophenoxyacetic acid

NAA:

naphthaleneacetic acid

NPTII:

neomycin phosphotransferase type II

GUS:

β-glucuronidase

CaMV:

cauliflower mosaic virus

MS:

Murashige and Skoog

X-Gluc:

5-bromo-4-chloro-3-indolyl-D-β-glucuronic acid

IBA:

indolebutyric acid

SDS:

sodium dodecyl sulfate

References

  • Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP (1984) Proc. Natl. Acad. Sci. USA, 81:5994–5998.

    Google Scholar 

  • Benfey PN, Chua N-H (1989) Science 244:174–181.

    Google Scholar 

  • de Block M, de Brouwer D, Tenning P (1989) Plant Physiol. 91:694–701.

    Google Scholar 

  • Charest PJ, Iyer VN, Miki BL (1989) Plant Cell Rep. 8:303–306.

    Google Scholar 

  • Chi G-L, Barfield DG, Sim G-E, Pua E-C (1990) Plant Cell Rep. 9:195–198.

    Google Scholar 

  • Chi G-L, Pua E-C (1989) Plant Sci. 64:243–250.

    Google Scholar 

  • Chi G-L, Pua E-C, Goh C-J (1991) Plant Physiol. (in press).

  • Chyi YS, Jorgensen, RA, Goldstein D, Tanksley SD (1986) Mol. Gen. Genet. 204:64–69.

    Google Scholar 

  • David C, Tempe J. (1988) Plant Cell Rep. 7:88–91.

    Google Scholar 

  • Debergh PC. (1983) Physiol. Plant. 59:270–276.

    Google Scholar 

  • Eichholtz DA, Rogers SC, Horsch RB, Klee, HJ, Hayford M, Holffmann NL, Bradford SB, Fink C, Flick J, O'Connell KM, Fraley RT (1987) Somatic Cell Mol. Genet. 13:67–76.

    Google Scholar 

  • Fischhoff DA, Bowdish KS, Perlak FJ, Marrone PG, McCormick SM, Niedermeyer JG, Dean DA, Kusano-Kretzmer K, Mayer EJ, Rochester DE, Rogers SC, Fraley RT (1987) Bio/Technology 5:807–813.

    Google Scholar 

  • Fry J, Barnason A, Horsch RB (1987) Plant Cell Rep 6:321–325.

    Google Scholar 

  • Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D (1987) Nature 330:160–163.

    Google Scholar 

  • Hill KK, Jarvis-Eagan N, Halk EL, Krahn KJ, Liao LW, Mathewson RS, Merlo DJ, Nelson SE, Rashka KE, Loesch-Fries L (1991) Bio/Technology 9:373–377.

    Google Scholar 

  • Hobbs SA, Jackson JA, Mahon JD (1989) Plant Cell Rep. 8:274–277.

    Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton M-D (1986) J. Bacteriol. 168:1291–1301.

    Google Scholar 

  • Janssen B-J, Gardner RC (1989) Plant Mol. Biol. 14:61–72.

    Google Scholar 

  • Jefferson RA (1987) Plant Mol. Biol. Rep. 5:387–405.

    Google Scholar 

  • Jia S-R, Yang M-Z, Ott R, Chua N-H (1989) Plant Cell Rep. 8:336–340.

    Google Scholar 

  • Kuhlemeier C, Green PJ, Chua N-H (1987) Ann. Rev. Plant Physiol. 38:221–257.

    Google Scholar 

  • Lawson C, Kaniewski W, Haley E, Rozman R, Newell C, Sanders P, Tumer NE (1990) Bio/Technology 8:127–134.

    Google Scholar 

  • Lee KY, Townsend J, Tepperman J, Black M, Chui CF, Mazur B, Dunsmuir P, Bedbrook J (1988) EMBO J. 7:1241–1248.

    Google Scholar 

  • Mathews H, Bharathan N, Litz RE, Narayanan KR, Rao PS, Bhatia CR (1990) Plant Sci. 72:245–252.

    Google Scholar 

  • Mathews VH, Bhatia CR, Mitra R, Krishna TG, Rao PS (1985) Plant Sci. 39:49–54.

    Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Plant Cell Rep. 5:81–84.

    Google Scholar 

  • Misra S, Gedamu L (1989) Theor. Appl. Genet. 78:161–168.

    Google Scholar 

  • Moloney MM, Walker JM, Sharma KK. (1989) Plant Cell Rep. 8:238–242.

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol. Plant. 15:473–479.

    Google Scholar 

  • Odell JJ, Nagy F, Chua N-H (1985) Nature 313:810–812.

    CAS  PubMed  Google Scholar 

  • Ooms G, Bains A, Burrell M, Karp A, Twell D, Wilcox E (1985) Theor. Appl. Genet. 71:325–329.

    Google Scholar 

  • Potrykus I (1989) TIBTECH 7:269–273.

    Google Scholar 

  • Pua E-C (1990) Plant Sci. 68:231–238.

    Google Scholar 

  • Pua E-C, Mehra-Palta A, Nagy F, Chua N-H (1987) Bio/Technology 5:815–817.

    Google Scholar 

  • Rogers SC, Horsch RB, Fraley RT (1986) Methods Enzymol. 118:627–640.

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (eds) (1989) Molecular cloning: a laboratory manual, 2nd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.

    Google Scholar 

  • Schell J (1987) Science 237:1176–1182.

    Google Scholar 

  • Schmidt R, Willmitzer L (1989) Plant Cell Rep. 7:583–586.

    Google Scholar 

  • Srivastava V, Reddy AS, Cuha-Mukherjee S (1988) Plant Cell Rep. 7:504–507.

    Google Scholar 

  • Stalker DM, Mcbride K, Malyj LD (1988) Science 242:419–422.

    Google Scholar 

  • Thomashow LS, Reeves S, Thomashow MF (1984) Proc. Natl. Acad. Sci. USA 81:5071–5075.

    Google Scholar 

  • Weising K, Schell J, Kahl G (1988) Ann. Rev. Genet. 22:421–477.

    Google Scholar 

  • White FF, Taylor BB, Huffman GA, Gordon MP (1985) J. Bacteriol. 164:33–44.

    Google Scholar 

  • Zambryski P (1988) Ann. Rev. Genet. 22:1–30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. B. Horsch

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barfield, D.G., Pua, EC. Gene transfer in plants of Brassica juncea using Agrobacterium tumefaciens-mediated transformation. Plant Cell Reports 10, 308–314 (1991). https://doi.org/10.1007/BF00193148

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00193148

Keywords

Navigation