Skip to main content
Log in

Erythromycin and cycloheximide sensitivities of protein and RNA Synthesis in sporulating cells of Saccharomyces cerevisiae: Environmentally induced modifications controlled by chromosomal and mitochondrial genes

  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The purpose of the experiments reported below was to examine the response in sporulation medium of the three diploid cell types MATα MATα, MATα MATα (asporogenic diploids) and MATα MATα (sporogenic diploid) to erythromycin, a specific inhibitor of mitochondrial protein synthesis (MPS) in vegetative cultures, and cycloheximide, a specific inhibitor of cytosol protein synthesis (CPS) in vegetative cultures. When MATα MATα diploids are transferred to sporulation medium a significant fraction of total protein synthesis (CPS + MPS) becomes sensitive to erythromycin in contrast to the behavior of MATa MATa and MATα MATα diploids in which the resistance of CPS to erythromycin is maintained. The decompartmentalization of erythromycin sensitivity is thus cell type specific. Erythromycin stimulates total RNA synthesis of MATα MATα cells in sporulation medium but not of MATα MATα and MATα MATα cells. Cycloheximide inhibits protein synthesis and stimulates RNA synthesis in all three diploid cell types. An erythromycin resistant mutant, shown to be due to a mutation of the mitochondrial genome, exhibited only partial resistance of CPS to erythromycin in sporulation medium in the background of the MATα MATα mating type genotype. Total RNA synthesis in this mutant was not stimulated. The results reported indicate that mitochondrial functions during sporulation are not restricted to those involving respiratory metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aronson AI, Spiegelman S (1961) Biochim Biophys Acta 53:84–95

    Google Scholar 

  • Croes AF (1966) Exptl Cell Res 41:452–454

    Google Scholar 

  • Ephrussi nB (1953) Clarendon Press, Oxford

  • Ephrussi B, Hottinguer H, Tavlitzki J (1949) Ann Inst Pasteur 76:419–450

    Google Scholar 

  • Esposito MS, Esposito RE, Arnaud M, Halvorson HO (1969) J Bacteriol 100:180–186

    Google Scholar 

  • Esposito MS, Esposito RE (1974) Proc Natl Acad Sci USA 71:3172–3176

    Google Scholar 

  • Esposito MS, Esposito RE (1974) Genetics 78:215–225

    Google Scholar 

  • Fast D (1973) J Bacteriol 116:925–930

    Google Scholar 

  • Friis J, Roman H (1968) Genetics 59:33–57

    Google Scholar 

  • Hopper AK, Hall BD (1975) Am Soc Microbiol

  • Hopper AK, MaGee PT, Welch SK, Friedman M, Hall B (1974) J Bacteriol 119:619–628

    Google Scholar 

  • Kennel D (1967) In: Grossman L, Moldave K (eds) vol XII, part A. Academic Press, New York, pp 686–693

  • Kuenzi MT, Tingle NA, Halvorson HO (1974) J Bacteriol 117:80–88

    Google Scholar 

  • MaGee PT (1974) Mol Biol Rep 1:275–281

    Google Scholar 

  • MaGee PT, Hopper AK (1974) J Bacteriol 119:952–960

    Google Scholar 

  • Magni GE, Von Borstel RC (1972) Genetics 47:806–814

    Google Scholar 

  • Mills D (1972) J Bacteriol 112:510–526

    Google Scholar 

  • Mills D, Schiller M, Petryna MM (1977) Mol Gen Genet 156:71–78

    Google Scholar 

  • Muto A, Kimura A, Osawa S (1975) Mol Gen Genet 139:321–327

    Google Scholar 

  • Pearson NJ, Haber JE (1977) Mol Gen Genet 158:81–91

    Google Scholar 

  • Pinon R, Salts Y, Simchen G (1974) Exp Cell Res 83:952–960

    Google Scholar 

  • Pratje E, Schultz R, Schniere S, Michaelis G (1979) Mol Gen Genet 176:411–415

    Google Scholar 

  • Puglisi PO, Zennaro E (1971) Experientia 27:963–964

    Google Scholar 

  • Roman H, Sands SM (1959) Proc Natl Acad Sci USA 39:171–179

    Google Scholar 

  • Roth R (1973) Proc Natl Acad Sci USA 70:3087–3091

    Google Scholar 

  • Roth R, Lusnak K (1970) Science 168:225–261

    Google Scholar 

  • Roth R, Fogel S (1971) Mol Gen Genet 112:259–305

    Google Scholar 

  • Roth R, Halvorson HO (1969) J Bacteriol 98:831–832

    Google Scholar 

  • Simchen G (1974) Genetics 76:745–753

    Google Scholar 

  • Sogin SG, Haber JE, Halvorson HO (1972) J Bacteriol 112:2, 806–814

    Google Scholar 

  • Tingle M, Singh Klar AJ, Henry SA, Halvorson HO (1973) Symp Soc Gen Microbiol 23:209–243

    Google Scholar 

  • Zennaro E, Falcone C, Frontali L, Puglisi PP (1976) Mol Gen Genet 150:136–140

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marmiroli, N., Tassi, F., Bianchi, L. et al. Erythromycin and cycloheximide sensitivities of protein and RNA Synthesis in sporulating cells of Saccharomyces cerevisiae: Environmentally induced modifications controlled by chromosomal and mitochondrial genes. Curr Genet 4, 51–62 (1981). https://doi.org/10.1007/BF00376786

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00376786

Key words

Navigation