Skip to main content
Log in

Posttranscriptional heme control of catalase synthesis in the yeast Saccharomyces cerevisiae

  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Compared to wild type cells, strains bearing the pleiotropic regulatory mutations cgr4 or cas1 synthesize apocatalase T at a high rate when grown on high glucose. Like heme-deficient ole3 single mutants, ole3 cgr4 and ole3 cas1 double mutants accumulate no catalase T protein in vivo. This defect introduced by the ole3 mutation is cured by the addition of ALA. By use of the inhibitor actinomycin D we confirm previous findings that ole3 mutants lack catalase T mRNA and show that (i) the ole3 cgr4 and ole3 cas1 double mutants do accumulate catalase T mRNA or mRNA precursor, and (ii) the processing or translation of this RNA or the accumulation of apocatalase T depends on the presence of home.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALA:

δ-aminolevulinate

References

  • Ammerer G, Richter K, Hartter E, Ruis H (1981) Eur J Biochem 113:327–331

    Google Scholar 

  • Barlas M, Ruis H, Sledziewski A (1978) FEBS Lett 92:195–199

    Google Scholar 

  • Bard H, Woods RA, Haslam JM (1974) Biochem Biophys Res Commun 52:324–330

    Google Scholar 

  • Beers RF Jr, Sizer JW (1952) J Biol Chem 195:133–140

    Google Scholar 

  • Biliriski T, Sledziewski A, Rytka J (1980) Acta Microbiol Polon 29:183–197

    Google Scholar 

  • Biliriski T, Litwińska J, Sledziewski A, Rytka J (1980) Acta Microbiol Polon 29:199–218

    Google Scholar 

  • Cross HS, Ruis H (1978) Mol Gen Genet 166:37–43

    Google Scholar 

  • Lowry OH, Rosebrough WJ, Farr AL, Randall RJ (1951) J Biol Chem 193:265–275

    Google Scholar 

  • Mason TL, Poyton RO, Wharton DC, Schatz G (1973) J Biol Chem 248:1346–1354

    Google Scholar 

  • Richter K, Ammerer G, Hartter E, Ruis H (1980) J Biol Chem 255:8019–8022

    Google Scholar 

  • Rytka J, Sledziewski A, Litwińska J, Biliński T (1976) Mol Gen Genet 145:37–42

    Google Scholar 

  • Rytka J, Sledziewski A, Lukaszkiewicz J, Biliriski T (1978) Mol Gen Genet 160:51–57

    Google Scholar 

  • Seah TCM, Bhatti AR, Kaplan JG (1973) Can J Biochem 51: 1551–1555

    Google Scholar 

  • Seah TCM, Bhatti AR, Kaplan JG (1978) FEBS Lett. 85:305–309

    Google Scholar 

  • Seah TCM, Kaplan JG (1973) J Biol Chem 248:2889–2893

    Google Scholar 

  • Slater ML (1973) J Bacteriol 173:263–270

    Google Scholar 

  • Spithill TW, Trembath MK, Lukins HB, Linnane AW (1978) Mol Gen Genet 164:155–162

    Google Scholar 

  • Susani M, Zimniak P, Fessl F, Ruis H (1976) Hoppe-Seyler's Z Physiol Chem 357:961–970

    Google Scholar 

  • Woloszczuk W, Sprinson DB, Ruis H (1980) J Biol Chem 255: 2624–2627

    Google Scholar 

  • Woods RA, Sanders HK, Briquet M, Foury F, Drysdale BE, Mattoon JR (1975) J Biol Chem 250:9090–9098

    Google Scholar 

  • Zimniak P, Hartter E, Ruis H (1975) FEBS Lett 59:300–304

    Google Scholar 

  • Zimniak P, Hartter E, Woloszczuk W, Ruis H (1976) Eur J Biochem 77:393–398

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sledziewski, A., Rytka, J., Biliński, T. et al. Posttranscriptional heme control of catalase synthesis in the yeast Saccharomyces cerevisiae . Curr Genet 4, 19–23 (1981). https://doi.org/10.1007/BF00376781

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00376781

Key words

Navigation