Skip to main content
Log in

Selective DNA amplification regulates transcript levels in plant mitochondria

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Most plant mitochondrial genomes exist as subgenomic-size fragments apparently due to recombination between repetitive sequences. This leads to the possibility that independently replicating subgenomic domains could result in mitochondrial gene copy number variation. We show, through Southern-blot analysis of both restricted and intact mtDNA, that there are gene-specific copy number differences in the monocot Zea mays. Comparison of two different maize genotypes, B37(N) and B37(T), a cytoplasmic male-sterile strain, reveal fewer gene copy number differences for B37(T) than for B37(N). In contrast to maize, significant gene copy number differences are not detected in the dicot Brassica hirta. We also demonstrate that mitochondrial transcriptional rates in both species are apparently dependent on gene copy number since relative rates determined by run-on analysis are proportional to relative gene copy numbers. Thus a direct relationship exists between plant mitochondrial gene copy number and transcriptional rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Annex B, Williams RS (1990) Mol Cell Bio 10:5671–5678

    Google Scholar 

  • Bendich AJ, Smith SB (1990) Curr Genet 17:421–425

    Google Scholar 

  • Blackburn EH, Karrer KN (1986) Annu Rev Genetics 20:501–522

    Google Scholar 

  • Brown GL, Kemble RJ (1989) Curr Genet 15:341–347

    Google Scholar 

  • Borck N, Walbot n (1982) Genet 102:109–128

    Google Scholar 

  • Dinouel N, Drissi R, Miyakawa I, Sor F, Rousset S, Fukuhara H (1993) Mol Cell Biol 13:2315–2323

    Google Scholar 

  • Fauron CM-R, Havlik M (1988) Nucleic Acids Res 16:10395–10396

    Google Scholar 

  • Fauron C, Havlik M (1989) Curr Genet 15:149–154

    Google Scholar 

  • Fauron C, Havlik M, Lonsdale D, Nichols L (1989) Mol Gen Genet 216:395–401

    Google Scholar 

  • Finnegan PM, Brown GG (1990) Plant Cell 2:71–83

    Google Scholar 

  • Folkerts O, Hanson MR (1989) Nucleic Acids Res 18:7345–7357

    Google Scholar 

  • Fukuhara H, Sor F, Drissi R, Dinouel N, Miyakawa I, Rousset S, Viola A (1993) Mol Cell Biol 13:2309–2314

    Google Scholar 

  • Gray MW, Hanic-Joyce PJ, Covello PS (1992) Annu Rev Plant Physiol Plant Mol Biol 43:145–175

    Google Scholar 

  • Gualberto JM, Wintz H, Weil JH, Grienenberger JM (1989) Mol Gen Genet 215:118–127

    Google Scholar 

  • Hanic-Joyce PJ, Gray MW (1991) Mol Cell Biol 11:2035–2039

    Google Scholar 

  • Hanson MR, Conde MF (1985) Int Rev Cytol 94:213–267

    Google Scholar 

  • Kornberg A (1980) DNA Replication WH Freeman and Co, San Fransisco, California

    Google Scholar 

  • Lee W, Murphree AL, Benedict WF (1984) Nature 309:458–460

    Google Scholar 

  • Levings CS III (1990) Science 250:942–947

    Google Scholar 

  • Levings CS III, Brown GG (1989) Cell 56:171–179

    Google Scholar 

  • Levy AA, Andre CP, Walbot V (1991) Genetics 128:417–424

    Google Scholar 

  • Mouches C, Paiplin Y, Agarwal M, Lemieux L, Herzog M, Abadon M, Beyssat-Arnaouty V, Hyrien O, Vincent B, Georghiou G, Pasteur N (1990) Proc Natl Acad Sci 87:2574–2578

    Google Scholar 

  • Manniatis T, Fritsch EF, Sambrook J (1982) Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

  • Mulligan RM, Leon P, Walbot V (1991) Mol Cell Biol 11:533–543

    Google Scholar 

  • Muise, RC, Hauswirth WW (1992) Curr Genet 22:235–242

    Google Scholar 

  • Nagley P (1991) Trends Genet 7:1–4

    Google Scholar 

  • Palmer JD (1990) Trends Genetics 6:115–120

    Google Scholar 

  • Palmer JD, Herbon LA (1987) Curr Genet 11:565–570

    Google Scholar 

  • Pring DR, Lonsdale DM (1985) Int Rev Cytol 97:1–42

    Google Scholar 

  • Rapp WD, Baumgartner BJ, Mullet J (1992) J Biol Chem 267:21404–21411

    Google Scholar 

  • Schmidt E, Merrill G (1989) J Biol Chem 264:21247–21256

    Google Scholar 

  • Simske JS, Scherer S (1989) Nucleic Acids Res 17:4359–4365

    Google Scholar 

  • Small ID, Isaac PG, Leaver CJ (1987) EMBOJ 6:865–869

    Google Scholar 

  • Small ID, Suffolk R, Leaver CJ (1989) Cell 58:69–76

    Google Scholar 

  • Smart CJ, Moneger F, Leaver CJ (1994) Plant Cell 6:811–825

    Google Scholar 

  • Takano H, Kawano S, Suyama Y, Kuroiwa T (1990) Curr Genet 18:125–131

    Google Scholar 

  • Van der Bleik AM, Baas F, Van der Velde-Koerts T, Beidler JL, Meyers MB, OZols RF, Hamilton TC, Joenje H, Borst P (1988) Cancer Res 48:5927–5932

    Google Scholar 

  • Veltri KL, Espiritu M, Singh G (1990) Cell Physiol 143:160–164

    Google Scholar 

  • Williams RS (1986) J Biol Chem 261:12390–12394

    Google Scholar 

  • Zweifel SG, Fangman WL (1991) Genetics 128:241–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. J. Leaver

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muise, R.C., Hauswirth, W.W. Selective DNA amplification regulates transcript levels in plant mitochondria. Curr Genet 28, 113–121 (1995). https://doi.org/10.1007/BF00315776

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00315776

Key words

Navigation