Skip to main content
Log in

Structural analysis of length mutations in a hot-spot region of wheat chloroplast DNAs

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The hot-spot region related to length mutations in the chloroplast genome of the wheat group was precisely analyzed at the DNA sequence level. This region, located downstream from the rbcL gene, was highly enriched in A+T, and contained a number of direct and inverted repeats. Many deletions/insertions were observed in the region. In most deletions/insertions of multiple nucleotides, short repeated sequences were found at the mutation points. Furthermore, a pair of short repeated sequences was also observed at the border of the translocated gene. A sequence homologous with ORF512 of tobacco cpDNA was truncated in cpDNAs of the wheat group and found only in the mitochondrial DNA of Ae. crassa, suggesting the inter-organellar translocation of this sequence. Mechanisms that could generate structural alterations of the chloroplast genome in the wheat group are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertini AM, Hofer M, Calos MP, Miller JH (1982) Cell 29:319–328

    Google Scholar 

  • Aldrich J, Cherney BW, Merlin E, Christopherson L (1988) Curr Genet 14:137–146

    Google Scholar 

  • Bae YS, Kawasaki I, Ikeda H, Liu LF (1988) Proc Natl Acad Sci USA 85:2076–2080

    Google Scholar 

  • Baldauf SL, Palmer JD (1990) Nature 344:262–265

    Google Scholar 

  • Berg DE, Howe MM (1989) Mobile DNA. Am Soc Microbiology, Washington, DC

    Google Scholar 

  • Bonen L, Gray MW (1980) Nucleic Acids Res 8:319–335

    Google Scholar 

  • Bowman CM, Barker RF, Dyer TA (1988) Curr Genet 14:127–136

    Google Scholar 

  • Brunier D, Michel B, Erlich SD (1988) Cell 52:883–892

    Google Scholar 

  • Canning S, Dryja TP (1989) Proc Natl Acad Sci USA 86:5044–5048

    Google Scholar 

  • DasGupta U, Weston-Hafer K, Berg DE (1987) Genetics 115:41–49

    Google Scholar 

  • Dieckmann CL, Gandy B (1987) Curr Genet 11:617–624

    Google Scholar 

  • Doebly FJ, Ma DP, Renfroe WT (1987) Curr Genet 11:617–624

    Google Scholar 

  • Farabaugh PJ, Schmeissner U, Hofer M, Miller JH (1978) J Mol Biol 126:847–863

    Google Scholar 

  • Foury F, Kolodynski J (1983) Proc Natl Acad Sci USA 80:5345–5349

    Google Scholar 

  • Furano AV, Somerville CS, Tsichlis PN, d'Ambrosio E (1986) Nucleic Acids Res 14:3717–3727

    Google Scholar 

  • Glickman BW, Ripley LS (1984) Proc Natl Acid Sci USA 81:512–516

    Google Scholar 

  • Gordon KHJ, Crouse E, Bohnert HJ, Herrmann RG (1982) Theor Appl Genet 61:373–384

    Google Scholar 

  • Gross SR, Hsieh T, Levine PH (1984) Cell 38:233–239

    Google Scholar 

  • Hasson JF, Moungneau E Cuzin F, Yaniv M (1984) J Mol Biol 177:53–68

    Google Scholar 

  • Hiratsuka J, Shimada H, Wittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun CR, Meng BY, Li YA, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M (1989) Mol Gen Genet 217:185–194

    Google Scholar 

  • Howe CJ (1985) Curr Genet 10:139–145

    Google Scholar 

  • Hyrien O, Debatisse M, Buttin G, de Saint Vincent DR (1987) EMBO J 6:2401–2408

    Google Scholar 

  • Ikeda H (1986) Proc Natl Acad Sci USA 83:922–926

    Google Scholar 

  • Joyce PBM, Spencer D, Gray MW (1988) Plant Mol Biol 11:833–844

    Google Scholar 

  • Katayama H, Sasakuma T, Ogihara Y (1991) Jpn J Genet 66:421–431

    Google Scholar 

  • Kolodner R, Tewari KK (1975) Biochim Biophys Acta 402:372–390

    Google Scholar 

  • Levinson G, Gutman GA (1987) Mol Biol Evol 4:203–221

    Google Scholar 

  • Lonsdale DM, Hodge TP, Howe CJ, Stern D (1983) Cell 34:1007–1014

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Moon E, Kao TH, Wu R (1988) Mol Gen Genet 213:247–253

    Google Scholar 

  • Nalbantoglu J, Hartley D, Phear G, Tear G, Meuth M (1986) EMBO J 5:1199–1204

    Google Scholar 

  • Nielsen BL, Tewari KK (1988) Plant Mol Biol 11:3–14

    Google Scholar 

  • Nishizawa Y, Hirai A (1987) Jpn J Genet 62:389–395

    Google Scholar 

  • Nugent JM, Palmer JD (1988) Curr Genet 14:501–509

    Google Scholar 

  • Ogihara Y, Tsunewaki K (1982) Jpn J Genet 57:371–396

    Google Scholar 

  • Ogihara Y, Tsunewaki K (1988) Theor Appl Genet 76:321–332

    Google Scholar 

  • Ogihara Y, Terachi T, Sasakuma T (1988) Proc Natl Acad Sci USA 85:8573–8577

    Google Scholar 

  • Ogihara Y, Terachi T, Sasakuma T (1991) Genetics 129:873–884

    Google Scholar 

  • Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S-I, Inokuchi H, Ozeki H (1986) Nature 322:572–574

    Google Scholar 

  • Ozeki H, Ohyama K, Inokuchi H, Fukuzawa H, Kohchi T, Sano T, Nakahigashi K, Umesono K (1987) Cold Spring Harbor Symp Quant Biol 52:791–804

    Google Scholar 

  • Palmer JD (1985) Annu Rev Genet 19:325–354

    Google Scholar 

  • Palmer JD, Jorgensen R, Thompson WF (1985) Genetics 109:195–213

    Google Scholar 

  • Pichersky E, Tanksley SD (1988) Mol Gen Genet 215:65–68

    Google Scholar 

  • Pyke KA, Marrison J, Leech RM (1989) FEBS Lett 242:305–308

    Google Scholar 

  • Rottmann WH, Brears T, Hodge TP, Lonsdale DM (1987) EMBO J 6:1541–1546

    Google Scholar 

  • Schon EA, Rizzuto R, Moraes CT, Nakase H, Zeviani M, DiMauro S (1989) Science 244:346–349

    Google Scholar 

  • Schuster W, Brennicke A (1988) Plant Sci 54:1–10

    Google Scholar 

  • Scott NS, Timmis JN (1984) Theor Appl Genet 67:279–288

    Google Scholar 

  • Shih CK, Linal M, Goodenow MM, Hayward WS (1984) Proc Natl Acad Sci USA 81:4697–4701

    Google Scholar 

  • Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Kusuda J, Takaiwa F, Kato A Tohdoh N, Shimada H, Sugiura M (1986) EMBO J 5:2043–2049

    Google Scholar 

  • Shuman S (1989) Proc Natl Acad Sci USA 86:3489–3493

    Google Scholar 

  • Singer BS, Westyle J (1988) J Mol Biol 202:233–243

    Google Scholar 

  • Sperry AO, Blasquez VC, Garrard WT (1989) Proc Natl Acad Sci USA 86:5497–5501

    Google Scholar 

  • Stein J vom, Hachtel Q (1988) Mol Gen Genet 213:513–518

    Google Scholar 

  • Tassopulu D, Kung SD (1984) Theor Appl Genet 67:185–193

    Google Scholar 

  • Terachi T, Ogihara Y, Tsunewaki K (1987) Jpn J Genet 62:375–387

    Google Scholar 

  • Turker MS, Domenico JD, Cummings DJ (1987) J Mol Biol 198:171–185

    Google Scholar 

  • Watson JC, Thompson WT, (1986) Methods Enzymol 118:57–75

    Google Scholar 

  • Weston-Hafer K, Berg DE (1989) Genetics 121:651–658

    Google Scholar 

  • Wolfson R, Higgins KG, Sears BB (1991) Mol Biol Evol 8:709–720

    Google Scholar 

  • Zurawski G, Clegg MT (1987) Annu Rev Plant Physiol 38:398–418

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by B. B. Sears

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogihara, Y., Terachi, T. & Sasakuma, T. Structural analysis of length mutations in a hot-spot region of wheat chloroplast DNAs. Curr Genet 22, 251–258 (1992). https://doi.org/10.1007/BF00351733

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351733

Key words

Navigation