Skip to main content
Log in

Yeast adenylate cyclase catalytic domain is carboxy terminal

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Subcloning of DNA fragments from the gene coding for yeast adenylate cyclase has permitted, after complementation studies in S. cerevisiae cdc35 mutants as well as E. coli cya mutants, to identify the sequence coding for the catalytic domain of the protein. No homology is found between the yeast cyclase catalytic domain and the homologous domain found in E. coli adenylate cyclase. Analysis by Northern blotting of yeast polyA mRNA has shown the existence of multiple transcriptional products of the gene. A putative origin of a major transcript (3.5 kb) would allow synthesis of a ca. 100,000 dalton protein exhibiting cyclase activity in its carboxy terminal domain, and having 7 repeats of 17 amino acids at its amino terminal end. Several noteworthy features, including the possibility of transcriptional control by the general control of amino acids biosynthesis, are present at this putative origin. Data are presented suggesting that a much longer gene product might also be synthesized from the CDC35 gene. Neither the gene organization nor the amino acid sequence of the protein does display any homology with the adenylate cyclase gene and protein of Escherichia coli. This suggests a case of evolutionary convergence for the synthesis of CAMP in prokaryotes and eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiba H, Mori K, Tanaka M, Ooi T, Roy A, Danchin A (1984) Nucleic Acids Res 12:9427–9440

    Google Scholar 

  • Ammerer G, Hitzeman R, Hagie F, Barta A, Hall B (1981) The functional expression of mammalian genes in yeast. In: Walton LJ (ed) Recombinant DNA. Elsevier, Amsterdam, pp 185–197

    Google Scholar 

  • Astell C, Ahlstrom-Jonasson L, Smith M, Tatchell K, Nasmyth K, Hall B (1981) Cell 27:15–23

    Google Scholar 

  • Aviv H, Leder P (1972) Proc Natl Acad Sci USA 69:1408

    Google Scholar 

  • Beacham I, Schweitzer B, Warrick H, Carbon J (1984) Gene 29:271–279

    Google Scholar 

  • Beckner SK, Hattori S, Shih TY (1985) Nature (London) 317:71–72

    Google Scholar 

  • Bennetzen JL, Hall BD (1982) J Biol Chem 257:3026–3031

    Google Scholar 

  • Breathnach R, Chambon P (1981) Annu Rev Biochem 50:349–383

    Google Scholar 

  • Burke JM, Breitenberger C, Heckman JE, Dujon B, Rajbhandary UL (1984) J Biol Chem 259:504–511

    Google Scholar 

  • Fraenkel DG (1985) Proc Natl Acad Sci USA 12:4740–4744

    Google Scholar 

  • Fröhlich KV, Entran KD, Mecke D (1985) Gene 36:105–111

    Google Scholar 

  • Hearing P, Shenk T (1983) Cell 33:695–703

    Google Scholar 

  • Hedegaard L, Danchin A (1985) Mol Gen Genet 847:1–5

    Google Scholar 

  • Henikoff S, Cohen E (1984) Mol Cell Biol 4:1515–1520

    Google Scholar 

  • Hinnesbusch AG, Fink GR (1983) J Biol Chem 258:5238–5247

    Google Scholar 

  • Hochschild A, Irwin N, Ptashne M (1983) Cell 32:319–325

    Google Scholar 

  • Jacq C, Banroques J, Becam AM, Slonimski PP, Guiso N, Danchin A (1984) EMBO J 3:1567–1572

    Google Scholar 

  • Kieny M, Lathe R, Lecocq JP (1983) Gene 26:91–99

    Google Scholar 

  • Laughon A, Scott M (1984) Nature (London) 310:25–31

    Google Scholar 

  • Leplatois P, Danchin A (1983) Biochimie 65:317–324

    Google Scholar 

  • Maniatis T, Fritsch E, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Masson P, Jacquemin JM, Culot M (1984) Ann Microbiol 135:343–351

    Google Scholar 

  • Matsumoto K, Uno I, Oshima Y, Ishikawa T (1982) Proc Natl Acad Sci USA 79:2355–2359

    Google Scholar 

  • Matsumoto K, Uno I, Ishikawa T (1984) J Bacteriol 157:277–282

    Google Scholar 

  • Messing J (1983) Methods Enzymol 101:20–78

    Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Nagamine Y, Reich E (1985) Proc Natl Acad Sci USA 82:4606–4610

    Google Scholar 

  • Pabo C, Sauer R (1984) Annu Rev Biochem 53:293–321

    Google Scholar 

  • Pfeuffer E, Dreher RM, Metzger H, Pfeuffer T (1985) Proc Natl Acad Sci USA 82:3086–3090

    Google Scholar 

  • Rodriguez RL, Tait RC (1983) Recombinant DNA techniques: an introduction. Addison-Wesley, Reading, Mass

    Google Scholar 

  • Roy A, Danchin A (1982) Mol Gen Genet 188:465–471

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1981) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Shepherd J, McGinnis W, Carrasco A, De Robertis E, Gehring W (1984) Nature (London) 310:70–71

    Google Scholar 

  • Sherman F, Fink G, Hicks J (1979) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Sprin Harbor, NY

    Google Scholar 

  • Uno I, Mitsuzawa H, Matsumoto K, Tanaka K, Oshima T, Ishikawa T (1986) Proc Natl Acad Sci USA (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masson, P., Lenzen, G., Jacquemin, J.M. et al. Yeast adenylate cyclase catalytic domain is carboxy terminal. Curr Genet 10, 343–352 (1986). https://doi.org/10.1007/BF00418405

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00418405

Key words

Navigation