Skip to main content
Log in

Fatigue-fracture mechanism of slowly notched poly(ethylene terephthalate) polymers

  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Summary

Fatigue fracture behavior of slowly notched polyethylene terephathalate (PET) polymers were investigated at temperatures close to their β transition temperatures up to well above their glass transition temperatures. Detailed characterization on the morphology of the notched roots showed that the crack tip during crack propagation became more dull with increasing testing temperature. The failure cycle (Nf) of these samples increased with increasing temperatures until it reached the α transition temperatures of PET polymers, and most of the increase in Nf is due to the increased time consumed in the initiation period. On the other hand, the initial crack growth rate increased significantly and Nf of these samples decreased dramatically as the temperature increased well above the glass transition temperature. This interesting temperature dependence of fatigue behavior is explained due to the change of molecular motion of PET polymers at this temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kurobe T and Wakashima H (1970) Jpn. Congr. Mater. Res.-Non-Metall. Mater., 13: 192

    Google Scholar 

  2. Kurobe T and Wakashima H (1972) Jpn. Congr. Mater. Res.-Non-Metall. Mater., 15: 137

    Google Scholar 

  3. Radon JC and Culver LE (1975) Polym. Eng. Sci., 15(7): 500

    Google Scholar 

  4. Skibo MD, Ph.D. Dissertation (1977) Lehigh Univ.

  5. Cheng WM, Miller GA, Manson JA, Hertzberg RW, and Sperling LH (1990) J. Mater. Sci., 25: 1924

    Google Scholar 

  6. Mai YM and Williams JG (1979) J. Mater. Sci., 14(8): 1933

    Google Scholar 

  7. Martin GC and Gerberich WW (1976) J. Mater. Sci., 11: 231

    Google Scholar 

  8. Wann RJ, Martin GC, and Gerberich WW (1976) Polym. Eng. Sci., 16(9): 645

    Google Scholar 

  9. Gerberich WW and Martin GC (1976) J. Polym. Sci., Polym. Phys. Ed., 14: 897

    Google Scholar 

  10. Yeh JT, and Lin YT (1993) J. Mater. Sci., 28: 3900

    Google Scholar 

  11. Plane-Strain Fracture Toughness of Metallic Materials (1989) ASTM E399-83

  12. Weisskopf K (1988) J. Polym. Sci., Part A, 26: 1919

    Google Scholar 

  13. Slade PE, Orfino TA (1968) in Analytical Calorimetry, eds. Porter RS, Johnson JF, p. 63

  14. Hoffman JD, Davis GT and Lauritzen JI (1975) “Treatise on Solid State Chemistry”, vol. 3, edited by Hannyay NB

  15. Daubeny RP, Bunn CW, Brown CJ (1954) Proc. Roy. Soc, London, A 226: 531

    Google Scholar 

  16. Alfonso GC, Pedemonte E and Ponzetti L (1979) Polymer, 20: 104

    Google Scholar 

  17. Keith HD, Padden FJ, and Vadimsky (1966) J. Polym. Sci., Part A-2, 4: 267

    Google Scholar 

  18. Keith HD, Padden FJ, and Vadimsky RG (1966) J. Appl. Phys., 37: 4027

    Google Scholar 

  19. Keith HD, Padden FJ, and Vadimsky RG (1971) J. Appl. Phys., 42: 4585

    Google Scholar 

  20. Vadimsky RG, Keith HD, and Padden FJ (1969) J. Polym. Sci., Part A-2, 7: 1367

    Google Scholar 

  21. Davis HA (1966) J. Polym. Sci., Part A-2, 4: 1009

    Google Scholar 

  22. Nagou S and K Azuma (1979) J. Macromol. Sci., Phys. Ed., 16: 435

    Google Scholar 

  23. Clark ES (1967) S. P. E. J., 23: 46

    Google Scholar 

  24. Keith HD, Padden FJ, and Vadimsky RG (1980) J. Polym. Sci., Polym. Phys. Ed., 18: 2307

    Google Scholar 

  25. Fischer EW, Hahn K, Kugler J, and Struth U (1984) J. Polym. Sci. Polym. Phys. Ed., 22: 1491

    Google Scholar 

  26. Zhizhenkov VV and Egorov EA (1984) J. Polym. Sci., Polym. Phys. Ed., 22: 117

    Google Scholar 

  27. Brown N and Ward IM (1983) J. Mater. Sci., 18: 1413

    Google Scholar 

  28. Yeh JT and Runt J (1991) J. Polym. Sci., Polym. Phys. Ed., 29: 371

    Google Scholar 

  29. Mccrum NG, Read BE, and Williams G (1967) Anelastic and Dielectric Effects in Polymeric Solids, Wiely, New York-London

    Google Scholar 

  30. Fallow G, Mcintosh J, and Ward IM (1960) Makromol. Chem., 38: 147

    Google Scholar 

  31. Illers KH and Breuer H (1963) J. Collid. Sci. 18: 1

    Google Scholar 

  32. Yeh JT and Runt J (1989) J. Mater. Sci., 24: 2637

    Google Scholar 

  33. Sauer JA, Foden E, and Morrow DR (1977) J. Polym. Eng. Sci. 17: 246

    Google Scholar 

  34. Ramirez A, Manson JA, and Hertzberg RW (1982) Polym. Eng. Sci. 22: 975

    Google Scholar 

  35. Charentenay FX, Laghouati F, and Dewas J (1979) in Deformation, Yield and Fracture of polymers, Plastics and Rubber Institute, London, p. 61

    Google Scholar 

  36. Bretz PE, Manson JA, and Hertzberg RW (1982) J. Appl. Polym. Sci., 27: 1707

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, J.T., Lin, Y.T. & Huang, S.S. Fatigue-fracture mechanism of slowly notched poly(ethylene terephthalate) polymers. Polymer Bulletin 33, 361–368 (1994). https://doi.org/10.1007/BF00314275

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00314275

Keywords

Navigation