Skip to main content
Log in

Weakly nonlinear stability analyses of one-dimensional Turing pattern formation in activator-inhibitor/immobilizer model systems

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

The development of one-dimensional Turing patterns characteristic of the chlorite-iodide-malonic acid/starch reaction as well as analogous Brussellator/immobilizer and Schnackenberg/immobilizer model systems is investigated by means of a weakly nonlinear stability analysis applied to the appropriately scaled governing equations. Then the theoretical predictions deduced from these pattern formation studies are compared with experimental evidence relevant to the Turing diffusive instabilities under examination in order to explain more fully the transition to such stationary symmetry-breaking spatial structures when the temperature or pool species concentrations vary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amato, I.: A chemical loom weaves new patterns. Science 261, 165 (1993)

    Google Scholar 

  2. Castets, V., Dulos, E., Boissonade, J., De Kepper, P.: Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. Phys. Rev. Lett. 64, 2953–2956 (1990)

    Google Scholar 

  3. De Kepper, P., Castets, V., Dulos, E., Boissonade, J.: Turing-type chemical patterns in the chlorite-iodide-malonic acid reaction. Physica D 49, 161–169 (1991)

    Google Scholar 

  4. Di Prima, R. C., Eckhaus, W., Segel, L. A.: Nonlinear wavenumber interaction in near-critical two-dimensional flows. J. Fluid Mech. 49, 705–744 (1971)

    Google Scholar 

  5. Drazin, R. G., Reid, W. H.: Hydrodynamic Stability. Cambridge: Cambridge University Press (1981)

    Google Scholar 

  6. Dufiet, V., Boissonade, J.: Conventional and unconventional Turing patterns. J. Chem. Phys. 96, 664–672 (1992)

    Google Scholar 

  7. Edelstein-Keshet, L.: Mathematical models in biology. New York: Random House (1988)

    Google Scholar 

  8. Epstein, I. R., Lengyel, I., Kadar, S., Kagan, M., Yokoyama, M.: New systems for pattern formation studies. Physica A 188, 26–33 (1992)

    Google Scholar 

  9. Graham, M. D., Kevrekidis, I. G., Asakura, K., Lauterbach, J., Krischer, K., Rotermund, H.-H., Ertl, G.: Effects of boundaries on pattern formation: Catalytic oxidation of CO on platinum. Science 264, 80–82 (1994)

    Google Scholar 

  10. Guslander, J., Field, R. J.: Modeling of an observed Turing structure in the ClO2 -I-Malonic Acid system. Int. J. Bifurcation and Chaos 1, 929–931 (1991)

    Google Scholar 

  11. Harrison, L. G.: Kinetic Theory of Living Patterns. New York: Cambridge University Press (1993)

    Google Scholar 

  12. Hunding, A., Sørensen, P. G.: Size adaptation of Turing prepatterns. J. Math. Biol. 26, 27–39 (1988)

    CAS  PubMed  Google Scholar 

  13. Lee, K. J., McCormick, W. D., Ouyang, Q., Swinney, H.L.: Pattern formation by interacting chemical fronts. Science 261, 192–194 (1993)

    Google Scholar 

  14. Lengyel, L, Epstein, I. R.: Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system. Science 251, 650–652 (1991)

    Google Scholar 

  15. Lengyel, L, Epstein, I. R.: A chemical approach to designing Turing patterns in reaction-diffusion systems. Proc. Natl. Acad. Sci. USA 89, 3977–3979 (1992)

    Google Scholar 

  16. Lengyel, L, Kádár, S., Epstein, I. R.: Quasi-two-dimensional Turing patterns in an imposed gradient. Phys. Rev. Lett. 69, 2729–2732 (1992)

    Google Scholar 

  17. Lengyel, L, Kádár, S., Epstein, I. R.: Transient Turing structures in a gradient-free closed system. Science 259, 493–495 (1993)

    Google Scholar 

  18. Lengyel, L, Rabai, G., Epstein, I. R.: Batch oscillation in the reaction of chlorine dioxide with iodine and malonic acid. J. Amer. Chem. Soc. 112, 4606–4607 (1990a)

    Google Scholar 

  19. Lengyel, I., Rabai, G., Epstein, I. R.: Experimental and modeling study of oscillations in the chlorine dioxide-iodine-malonic acid reaction. J. Amer. Chem. Soc. 112, 9104–9110 (1990b)

    Google Scholar 

  20. Luo, Y.: Private communication (1994)

  21. Malkus, W. V. R., Veronis, G.: Finite amplitude cellular convection. J. Fluid Mech. 4, 225–260 (1958)

    Google Scholar 

  22. Murray, J. D.: Mathematical Biology. Berlin: Springer-Verlag (1989)

    Google Scholar 

  23. Murray, J. D.: Discussion: Developmental biology: Turing theory of morphogenesis — its influence on modelling biological pattern and form. Bull. Math. Biol. 52, 119–152 (1990)

    Google Scholar 

  24. Niehrs, C., Steinbeisser, H., De Robertis, E. M.: Mesodermal patterning by a gradient of the vertebrate homeobox gene goosecoid. Science 263, 817–820 (1994)

    Google Scholar 

  25. Noszticzius, Z., Ouyang, Q., McCormick, W. D., Swinney, H. L.: Effect of Turing pattern indicators on CIMA oscillators. J. Phys. Chem. 96, 6302–6307 (1992)

    Google Scholar 

  26. Othmer, H. G., Scriven, L. E.: Interaction of reaction and diffusion in open systems. Ind. & Eng. Chem. Fund. 8, 302–313 (1969)

    Google Scholar 

  27. Ouyang, Q., Swinney, H. L.: Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352, 610–612 (1991a)

    Google Scholar 

  28. Ouyang, Q., Swinney, H. L.: Transition to chemical turbulence. Chaos 1, 411–420 (1991b)

    Google Scholar 

  29. Ouyang, Q., Gunaratne, G.H., Swinney, H. L.: Rhombic patterns: Broken hexagonal symmetry. Chaos 3, 707–711 (1993)

    Google Scholar 

  30. Ouyang, Q., Noszticzius, Z., Swinney, H. L.: Spatial bistability of two-dimensional Turing patterns in a reaction-diffusion system. J. Phys. Chem. 96, 6773–6776 (1992)

    Google Scholar 

  31. Pearson, J. E.: Pattern formation in a (2 + 1)-species activator-inhibitor-immobilizer system. Physica A 188, 178–189 (1992)

    Google Scholar 

  32. Pearson, J. E.: Complex patterns in simple systems. Science 261, 189–192 (1993)

    Google Scholar 

  33. Pool, R.: Did Turing discover how the leopard got its spots? Science 251, 627 (1991)

    Google Scholar 

  34. Prigogine, L, Lefever, R.: Symmetry breaking instabilities in dissipative systems II. J. Chem. Phys. 48, 1695–1700 (1968)

    Article  Google Scholar 

  35. Schnackenberg, J.: Simple chemical reaction systems with limit cycle behavior. J. Theor. Biol. 81, 389–400 (1979)

    Google Scholar 

  36. Segel, L. A., Jackson, J. L.: Dissipative structure: an explanation and an ecological example. J. Theor. Biol. 37, 545–559 (1972)

    Google Scholar 

  37. Segel, L. A., Levin, S. A.: Applications of nonlinear stability theory to the study of the effects of diffusion on predator-prey interactions. In: Piccirelli, R. A. (ed) Topics in Statistical Mechanics and Biophysics. A Memorial to Julius L. Jackson. AIP Conf. Proc. No. 27, pp. 123–152. New York: Amer. Inst. Phys. 1976

    Google Scholar 

  38. Slater, J. C.: Introduction to Chemical Physics. New York: Dover (1970)

    Google Scholar 

  39. Streitwieser, A., Heathcock, C. H.: Introduction to Organic Chemistry. New York: MacMillan 1985

    Google Scholar 

  40. Stuart, J. T.: On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows, Part 1. The basic behavior in plane Poiseuille flow. J. Fluid Mech. 1, 353–370 (1960)

    Google Scholar 

  41. Swinney, H. L., Krinsky, V. I.: Waves and Patterns in Chemical and Biological Media. Cambridge, MA.: MIT Press (1992) [Reprinted from Physica D 49, 1–256 (1991)]

    Google Scholar 

  42. Turing, A. M.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. B237, 37–72 (1952)

    Google Scholar 

  43. Watson, J.: On the nonlinear mechanics of wave distrubances in stable and unstable parallel flows, Part 2. The development of a solution for plane Poiseuille and for plane Couette flow. J. Fluid Mech. 9, 371–389 (1960)

    Google Scholar 

  44. Winfree, A. T.: Chemical waves: Crystals from dreams. Nature 352, 568–569 (1991)

    Google Scholar 

  45. Wollkind, D. J., Collings, J. B., Barba, M. C. B.: Diffusive instabilities in a one-dimensional model system for a mite predator-prey interaction on fruit trees: Dispersal motility and aggregative preytaxis effects. J. Math. Biol. 29, 339–362 (1991)

    Google Scholar 

  46. Wollkind, D. J., Manoranjan, V. S., Zhang, L.: Weakly nonlinear stability analyses of prototype reaction-diffusion model equations. SIAM Review 36, 176–214 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephenson, L.E., Wollkind, D.J. Weakly nonlinear stability analyses of one-dimensional Turing pattern formation in activator-inhibitor/immobilizer model systems. J. Math. Biol. 33, 771–815 (1995). https://doi.org/10.1007/BF00187282

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00187282

Key words

Navigation