Skip to main content
Log in

Competition and cooperation in catalytic selfreplication

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

It is shown that in a flow reactor, hypercyclic coupling of self-reproducing macromolecular species leads to cooperation, i.e. none of the concentrations will vanish. On the other hand, autocatalytic selfreproducing macromolecules usually compete, and the number of surving species increases with the total concentration. Both results are proved under very general assumptions concerning the growth rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Eigen, M.: Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–526 (1971)

    Google Scholar 

  • Eigen, M., Schuster, P.: The hypercycle: A principle of natural self-organization, Part A: Emergence of the hypercycle. Naturwissenschaften 64, 541–565 (1977)

    Google Scholar 

  • Eigen, M., Schuster, P.: The hypercycle: A principle of natural self-organization, Part B: The abstract hypercycle. Naturwissenschaften 65, 7–41 (1978a)

    Google Scholar 

  • Eigen, M., Schuster, P.: The hypercycle: A principle of natural self-organization, Part C: The realistic hypercycle. Naturwissenschaften 65, 341–369 (1978b)

    Google Scholar 

  • Eigen, M., Schuster, P., Sigmund, K., Wolff, R.: Elementary step dynamics of catalytic hypercycles. Biosystems 13, 1–22 (1980)

    Google Scholar 

  • Epstein, I. R.: Competitive coexistence of self-reproducing macromolecules. J. Theor. Biol. 78, 271–298 (1979a)

    Google Scholar 

  • Epstein, I. R.: Coexistence, competition and hypercyclic interaction in some systems of biological interest. Biophys. Chem. 9, 245–250 (1979b)

    Google Scholar 

  • Feinberg, M.: Mathematical aspects of mass action kinetics. In: Chemical reactor theory (L. Lapidus, N. R. Amundson, eds.), pp. 1–78. Englewood Cliffs, N. J.: Prentice-Hall Inc. 1977

    Google Scholar 

  • Hofbauer, J., Schuster, P., Sigmund, K.: A note on evolutionary stable strategies and game dynamics. J. Theor. Biol. 81, 609–612 (1979)

    Google Scholar 

  • Hofbauer, J., Schuster, P., Sigmund, K., Wolff, R.: Dynamical systems under constant organization, Part II: Homogeneous growth functions of degree P = 2. SIAM J. Appl. Math. C38, 282–304 (1980)

    Google Scholar 

  • Jones, B. L., Enns, R. H., Ragnekar, S. S.: On the theory of selection of coupled macromolecular systems. Bull. Math. Biol. 38, 15–28 (1976)

    Google Scholar 

  • Küppers, B. O.: Towards an experimental analysis of molecular self-organization and precellular Darwinian evolution. Naturwissenschaften 66, 228–243 (1979)

    Google Scholar 

  • Küppers, B. O., Sumper, M.: Minimal requirement for template recognition by bacteriophage replicase: Approach to general RNA-dependent RNA synthesis. Proc. Nat. Acad. Sci. U.S.A. 72, 2640–2643 (1978)

    Google Scholar 

  • Maynard-Smith, J.: The theory of games and the evolution of animal conflicts. J. Theor. Biol. 47, 209–221 (1974)

    Google Scholar 

  • Schneider, F. W., Neuser, D., Heinrichs, M.: Hysteretic behaviour in poly(A)-poly(U) synthesis in a stirred flow reactor. In: Molecular mechanisms of biological recognition (M. Balaban, ed.), pp. 241–252. Amsterdam: Elsevier North-Holland Biomedical Press 1979

    Google Scholar 

  • Schuster, P., Sigmund, K.: A mathematical model of the hypercycle. In: Synergetics (H. Haken, ed.). Proceedings of a Conference in Bielefeld, September 1979, (1980)

  • Schuster, P., Sigmund, K., Wolff, R.: Dynamical systems under constant organization, Part I: A model for catalytic hypercycles. Bull. Math. Biology 40, 743–769 (1978)

    Google Scholar 

  • Schuster, P., Sigmund, K., Wolff, R.: Dynamical systems under constant organization, Part III: Cooperative and competitive behaviour of hypercycles. J. Differential Equations 32, 357–368 (1979)

    Google Scholar 

  • Spiegelmann, S.: An approach to the experimental analysis of precellular evolution. Q. Rev. Biophys. 4, 213–253 (1971)

    Google Scholar 

  • Sumper, M., Luce, R.: Evidence for de novo production of self-replicating and environmentally adapted RNA structures by bacteriophage replicase. Proc. Nat. Acad. Sci. U.S.A. 72, 162–166 (1975)

    Google Scholar 

  • Taylor, P., Jonker, L.: Evolutionary stable strategies and game dynamics. Math. Biosc. 40, 145–156 (1978)

    Google Scholar 

  • Thompson, C. J., McBride, J. L.: On Eigen's theory of self-organization of matter and evolution of biological macromolecules. Math. Biosc. 21, 127–142 (1974)

    Google Scholar 

  • Zeeman, E. C.: Population dynamics from game theory. Proc. Int. Conf. on Global Theory of Dynamical Systems, Northwestern University, Evanston, 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work has been supported by the Austrian Fonds zur Förderung der Wissenschaftlichen Forschung, Proj. No. 3502

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofbauer, J., Schuster, P. & Sigmund, K. Competition and cooperation in catalytic selfreplication. J. Math. Biology 11, 155–168 (1981). https://doi.org/10.1007/BF00275439

Download citation

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00275439

Key words

Navigation