Skip to main content
Log in

Linear birefringence and X-Ray diffraction studies of the structural phase transition in titanite, CaTiSiO5

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The antiferroelectric phase transition in titanite characterised by a collinear displacement of Ti-atoms from their central octahedral position is investigated using linear optical birefringence and X-ray diffraction techniques. Both methods indicate a continuous transition near 496 K and extra contributions to δΔn and X-ray intensity signals at higher temperatures. The critical exponent of the macroscopic order parameter is found to be β = 0.14 ± 0.02 and the transformation is interpreted in terms of a two-dimensional quasi-spin model. Topological features of the structure agree well with the spatial distribution of the diffuse scattering of the superstructure reflection 40\(\bar 3\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bismayer U, Salje E, Glazer AM, Cosier J (1986) Effect of strain-induced order-parameter coupling on the ferroelastic behaviour of lead phosphate-arsenate. Phase Trans 6:129–151

    Google Scholar 

  • Birgenau RJ, Als-Nielsen J, Shirane G (1977) Critical behaviour of pure and site-random antiferromagnets. Phys Rev B 16:280–292

    Google Scholar 

  • Blinc R, Zecks B (1974) Soft modes in ferroelectrics and antiferro-electrics. North Holland, Amsterdam

    Google Scholar 

  • Bradley CJ, Cracknell AP (1972) The mathematical theory of symmetry and solids. Clarendon Press, Oxford

    Google Scholar 

  • Bruce AP, Cowley RM (1981) Structural phase transitions. Taylor & Francies, London

    Google Scholar 

  • Ghose S, Ito Y, Hatch DM (1991) Paraelectric-antiferroelectric phase transition in titanite, CaTiSiO5 I. A high temperature X-ray diffraction study of the order parameter and transition mechanism. Phys Chem Minerals 17:591–603

    Google Scholar 

  • Higgins JB, Ribbe PH (1976) The chrystal chemistry and space groups of natural and synthetic titanites. Am Mineral 61:878–888

    Google Scholar 

  • Janssen T (1973) Crystallographic groups. North Holland, Amsterdam

    Google Scholar 

  • Kleemann W, Schäfer FJ, Rytz D (1986) Crystal optical studies of precursor and spontaneous polarization in PbTiO3. Phys Rev B 34:7873–7879

    Google Scholar 

  • Kosterlitz JM, Thouless DJ (1973) Ordering, metastability and phase transitions in two-dimensional systems. J Phys C 6:1181–1203

    Google Scholar 

  • Marais S, Heine V, Nex Chris, Salje E (1991) Phenomena due to strain coupling in phase transitions. Phys Rev L 66:2480–2483

    Google Scholar 

  • Mongiorgi R, di Sanseverino LR (1968) A reconsideration of the structure of titanite, CaTiOSiO4. Mineral Petrogr Acta 14:123–141

    Google Scholar 

  • Salje E (1990) Phase transition in ferroelastic and co-elastic crystals. Cambridge University Press, Cambridge

    Google Scholar 

  • Salje E, Wruck B, Thomas H (1991) Order-parameter saturation and low-temperature extension of Landau theory. Z Phys B — Condensed Matter 82:399–404

    Google Scholar 

  • Salje E, Schmidt Claudia, Bismayer U (1992) Structural phase transition in titanite, CaTiSiO5: a ramanspectroscopic study. Phys Chem Minerals (in press)

  • Schmahl WW, Salje E (1989) X-ray diffraction study of the orientational order/disorder transition in NaNO3: evidence for order parameter coupling. Phys Chem Minerals 16:790–798

    Google Scholar 

  • Speer JA, Gibbs GV (1976) The crystal structure of synthetic titanite, CaTiSiO5, and the domain textures of natural titanites. Am Mineral 61:238–247

    Google Scholar 

  • Stanley HE (1971) Introduction to phase transitions and critical phenomena. Oxford University Press, Oxford

    Google Scholar 

  • Stokes HT, Hatch DM (1988) Isotropy subgroups of the 230 crystallographic space groups. World Scientific, Singapore

    Google Scholar 

  • Tanaka I, Obuchi T, Kojima H (1988) Growth and characterization of titanite (CaTiSiO5) single crystals by the floating zone method. J Crystal Growth 87:169–174

    Google Scholar 

  • Taylor M, Brown GE (1976) High temperature structural study of the P21/a-A2/a phase transition in synthetic titanite, CaTiSiO5. Am Mineral 61:435–447

    Google Scholar 

  • Toledano P, Toledano JC (1976) Order-parameter symmetries for improper ferroelectric nonferroelastic transitions. Phys Rev B 14:3097–3109

    Google Scholar 

  • Toledano P, Toledano JC (1982) Nonferroic phase transitions. Phys Rev B 25:1946–1964

    Google Scholar 

  • Van Heurck C, Van Tendeloo G, Ghose S, Amelinckx S (1991) Paraelectric-antiferroelectric phase transition in titanite, CaTiSiO5 II. Electron diffraction and electron microscopic studies of transition dynamics. Phys Chem Minerals 17:604–610

    Google Scholar 

  • Wood IG, Glazer AM (1980) Ferroelastic phase transition in BiVO4 I. Birefringence measurements using the rotating-analyser method. J Appl Crystallogr 13:217–223

    Google Scholar 

  • Zachariasen WH (1930) The crystal structure of titanite. Z Kristallogr 73:7–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bismayer, U., Schmahl, W., Schmidt, C. et al. Linear birefringence and X-Ray diffraction studies of the structural phase transition in titanite, CaTiSiO5 . Phys Chem Minerals 19, 260–266 (1992). https://doi.org/10.1007/BF00202317

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202317

Keywords

Navigation