Skip to main content
Log in

Development of a transformation system forTrichoderma longibrachiatum and its use for constructing multicopy transformants for theegl1 gene

  • Applied Genetics and Regulation
  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

An efficient transformation system for the fungusTrichoderma longibrachiatum has been developed. Transformation was obtained both by electroporation and polyethyleneglycol treatment, using a plasmid carrying theEscherichia coli hygromycin B phosphotransferase gene as a dominant selectable marker. The transformation frequency was 0.5 to 5 transformants /μg plasmid DNA. Transformation normally occurred by tandem integration of the transforming DNA. A high percentage of the transformants were mitotically unstable. The efficiency of co-transformation was very high (around 90%), and several co-transformants containing multiple copies of theegll gene encoding a β-(1,4)-endoglucanase were obtained. Some of them secrete increased levels of endoglucanase to the culture medium. In addition, theE. coli lacZ gene was expressed in an active form under control of theAspergillus nidulans gpdA gene promoter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arsdell JN van, Kwok S, Schweickart VL, Ladner M, Gelfland DH, Innis MA (1987) Cloning, characterization, and expression inSaccharomyces cerevisiae of endoglucanase I fromTrichoderma reesei. Bio/Technology 5: 60–64

    Google Scholar 

  • Barnett CC, Berka RM, Fowler T (1991) Cloning and amplification of the gene encoding an extracellular β-glucosidase fromTrichoderma reesei: evidence for improved rates of saccharification of cellulosic substrates. Bio/Technology 9: 562–567

    PubMed  Google Scholar 

  • Bergès T, Barreau C (1991) Isolation of uridine auxotrophs fromTrichoderma reesei and efficient transformation with the clonedura3 andura5 genes. Curr Genet 19: 359–365

    PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  PubMed  Google Scholar 

  • Chen MC, Gritzali M, Stafford WD (1987) Nucleotide sequence and deduced primary structure of cellobiohydrolase II fromTrichoderma reesei. Bio/Technology 5: 274–278

    Google Scholar 

  • Cheng C, Tsukagoshi N, Udaka S (1990) Transformation ofTrichoderma viride using theNeurospora crassa pyr4 gene and its use in the expression of a Taka-amylase A gene fromAspergillus oryzae. Curr Genet 18: 453–456

    Google Scholar 

  • Durand H, Baron M, Calmels T, Tiraby G (1988) Classical and molecular genetics applied toTrichoderma reesei for the selection of improved cellulolytic industrial strains. In: Paubert JP, Beguin P, Millet J (eds) Biochemistry and genetics of cellulose degradation. Academic Press, London, pp 135–151

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabelling DNA restriction fragments to high specific activity. Anal Biochem 132: 6–13

    PubMed  Google Scholar 

  • Goldman GH, Montagu M van, Herrera-Estrella A (1990) Transformation ofTrichoderma harzianum by high-voltage electric pulse. Curr Genet 17: 169–174

    Google Scholar 

  • González R, Ferrer S, Buesa J, Ramón D (1989) Transformation of the dermatophyteTrichophyton mentagrophytes to hygromycin B resistance. Infect Immun 57: 2923–2925

    PubMed  Google Scholar 

  • González R, Ramón D, Pérez-González JA (1992) Cloning, sequence analysis and yeast expression of theegll gene fromTrichoderma longibrachiatum. Appl Microbiol Biotechnol 38: 370–375

    PubMed  Google Scholar 

  • Gorcom RFM, Pouwels PH, Goosen T, Visser J, Broek HWJ van der, Hamer JE, Timberlake WE, Hondel CAMJJ van den (1985) Expression of anEscherichia coli β-galactosidase fusion gene inAspergillus nidulans. Gene 40: 99–106

    PubMed  Google Scholar 

  • Gruber F, Visser J, Kubicek CP, Graaf L de (1990a) The development of a heterologous transformation system for the cellulolytic fungusTrichoderma reesei based on apyrG-negative mutant strain. Curr Genet 18: 71–76

    PubMed  Google Scholar 

  • Gruber F, Visser J, Kubicek CP, Graaf L de (1990b) Cloning of theTrichoderma reesei pyrG gene and its use as a homologous marker for a high-frequency transformation system. Curr Genet 18: 447–451

    Google Scholar 

  • Hanahan D (1983) Studies on transformation ofEscherichia coli with plasmids. J Mol Biol 166: 557–580

    PubMed  Google Scholar 

  • Herrera-Estrella A, Goldman GH, Montagu M van (1990) High-efficiency transformation system for the biocontrol agents,Trichoderma spp. Mol Microbiol 4: 839–843

    PubMed  Google Scholar 

  • Knowles JKC, Lehtovaara P, Teeri T, Penttillä ME, Salovouri T, André L (1987) The application of recombinant DNA technology to cellulases and lignocellulosic wastes. Philos Trans R Soc London [Biol] 321: 449–454

    Google Scholar 

  • Mandels M (1985) Application of cellulases. Biochem Soc Trans 13: 414–416

    PubMed  Google Scholar 

  • Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor, New York

    Google Scholar 

  • Montenecourt BS (1983)Trichoderma reesei cellulases. Trends Biotechnol 1: 156–161

    Google Scholar 

  • Myers AM, Tzagoloff A, Kinney DM, Lusty CJ (1986) Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction oflacZ fusions. Gene 45: 299–310

    PubMed  Google Scholar 

  • Papavizas GC (1985)Trichoderma andGliocladium: biology, ecology, and potential for biocontrol. Annu Rev Phytopathol 23: 23–54

    Google Scholar 

  • Penttillä ME, Lehtovaara P, Nevalainen H, Bhikhabhai R, Knowles JKC (1986) Homology between cellulase genes ofTrichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. Gene 45: 253–263

    PubMed  Google Scholar 

  • Penttillä ME, André L, Saloheimo M, Lehtovaara P, Knowles JKC (1987a) Expression of twoTrichoderma reesei endoglucanases in the yeastSaccharomyces cerevisiae. Yeast 3: 175–185

    PubMed  Google Scholar 

  • Penttillä ME, Nevalainen H, Rattö M, Salminen E, Knowles JKC (1987b) A versatile transformation system for the cellulolytic filamentous fungusTrichoderma reesei. Gene 61: 155–164

    PubMed  Google Scholar 

  • Pérez-González JA, González R, Querol A, Sendra J, Ramón D (1993) Construction of a recombinant wine yeast strain expressing a β-(1,4)-endoglucanase activity and its use in microvinification experiments. Appl Environ Microbiol 59: 2801–2806

    PubMed  Google Scholar 

  • Pontecorvo G, Ropper JA, Jemmons LJ, MacDonald KD, Buft AWJ (1953) The genetics ofAspergillus nidulans. Adv Genet 5: 141–238

    PubMed  Google Scholar 

  • Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, Hondel CAMJJ van den (1987) Transformation ofAspergillus based on the hygromycin B resistance marker fromEscherichia coli. Gene 56: 117–124

    PubMed  Google Scholar 

  • Ruiz-Sala P, Pérez-González JA, Ramón D (1993) Nucleotide sequence of aTrichoderma longibrachiatum DNA fragment encoding the 5.8S rRNA gene. Nucleic Acids Res 21: 741

    PubMed  Google Scholar 

  • Saloheimo M, Lehtovaara P, Penttillä ME, Teeri TT, Stahlberg J, Petterson G, Claeyssens M, Tomme P, Knowles JK (1988) EGIII, a new endoglucanase fromTrichoderma reesei: the characterization of both gene and enzyme. Gene 63: 11–21

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning:a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.

    Google Scholar 

  • Shoemaker S, Schweickart V, Ladner M, Gelfand D, Kowk S, Myambo K, Innis M (1983) Molecular cloning of exo-cellobiohydrolase I derived fromTrichoderma reesei strain L27. Bio/technology 1: 691–696

    Google Scholar 

  • Sivan A, Stasz TE, Hemmat M, Hayes CK, Harman GE (1992) Transformation ofTrichoderma spp. with plasmids conferring hygromycin B resistance. Mycologia 84: 687–694

    Google Scholar 

  • Smith JL, Bayliss FT, Ward M (1991) Sequence of the clonedpyr4 gene ofTrichoderma reesei and its use as homologous selectable marker for transformation. Curr Genet 19: 27–33

    PubMed  Google Scholar 

  • Sternberg D (1976) Production of cellulase byTrichoderma. Biotechnol Bioeng Symp 6: 35–53

    PubMed  Google Scholar 

  • Sternberg D, Mandels GR (1979) Induction of cellulolytic enzymes inTrichoderma reesei by sophorose. J Bacteriol 139: 761–769

    PubMed  Google Scholar 

  • Teeri TT, Lehtovaara P, Kauppinen S, Salovouri I, Knowles JKC (1987) Homologous domains inTrichoderma reesei cellulolytic enzymes:gene sequence and expression of cellobiohydrolase II. Gene 51: 43–52

    PubMed  Google Scholar 

  • Ulhoa CJ, Vainstein MH, Peberdy JF (1992) Transformation ofTrichoderma species with dominant selectable markers. Curr Genet 21: 23–26

    Google Scholar 

  • Ventura L, Ramón D (1991) Transformation ofAspergillus terreus with the hygromycin B resistance marker fromEscherichia coli. FEMS Microbiol Lett 82: 189–194

    Google Scholar 

  • Wood TM, Bhat KM (1988) Methods for measuring cellulase activities. Methods Enzymol 160: 87–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Torres, P., González, R., Pérez-González, J.A. et al. Development of a transformation system forTrichoderma longibrachiatum and its use for constructing multicopy transformants for theegl1 gene. Appl Microbiol Biotechnol 41, 440–446 (1994). https://doi.org/10.1007/BF00939033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00939033

Keywords

Navigation