Skip to main content
Log in

Ionic channels through the axon membrane (a review)

  • Published:
Biophysics of structure and mechanism Aims and scope Submit manuscript

Abstract

Ionic channels are discrete sites at which the passive movement of ions takes place during nervous excitation. Three types of channels are distinguished. 1. Leakage channels that are permanently open to various cations. 2. Na channels that open promptly on depolarization but slowly close again (inactivate) on sustained depolarization and that are predominantly permeable to Na+ ions. 3. K channels that on depolarization open after some delay but stay open and that are mainly passed by K+ ions. The selectivity sequence of the Na channels of the squid axon (or frog nerve) is as follows: Na+ ≈ Li+>(T1+)>NH+ 4≫K+> Rb+, Cs+; that of K channels is: (T1+)>K+>Rb+>NH+ 4≫Na+, Cs+, Na channels are selectively blocked by tetrodotoxin (TTX) or saxitoxin (STX), K channels by tetraethylammonium ions (TEA). Either channel type is reversibly blocked when one drug molecule binds to one site per channel, the equilibrium dissociation constant of these reactions being about 3×10−9 MTTX (or STX) and 4×10−4 M TEA, respectively. Because of their specificity and high affinity, TTX and STX are used to “titrate” the Na channels whose density appears to be of the order of 100/Μm2. The “gates” of the channels operate as a function of potential and time but independent of the permeating ion species. Drugs (e.g. veratridine) and enzymes (e.g. pronase, applied intraaxonally) cause profound changes in the gating function of the Na channels without influencing their selectivity. This points to separate structures for gating and ion discrimination. The latter is thought to be, in part, brought about by a “selectivity filter” of which detailed structural ideas exist. Recent experiments suggest that the gates of the Na channels are controlled by charged particles moving within the membrane under the influence of the electrical field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Armstrong, C. M.: Time course of TEA+-induced anomalous rectification in squid giant axons. J. gen. Physiol.50, 491–503 (1966)

    Google Scholar 

  • Armstrong, C. M.: Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injected in squid axon. J. gen. Physiol.54, 553–575 (1969)

    Google Scholar 

  • Armstrong, C. M.: Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J. gen. Physiol.58, 413–437 (1971)

    Google Scholar 

  • Armstrong, C. M., Bezanilla, F.: Currents related to the movement of the gating particles of the sodium channels. Nature (Lond.)242, 459–461 (1973)

    Google Scholar 

  • Armstrong, C. M., Bezanilla, F., Rojas, E.: Destruction of sodium conductance inactivation in squid axons perfused with pronase. J. gen. Physiol.62, 375–391 (1973)

    Google Scholar 

  • Armstrong, C. M., Binstock, L.: Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride. J. gen. Physiol.48, 859–872 (1965)

    Google Scholar 

  • Armstrong, C. M., Hille, B.: The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier. J. gen. Physiol.59, 388–400 (1972)

    Google Scholar 

  • Benzer, T. I., Raftery, M. A.: Partial characterization of a tetrodotoxin-binding component from nerve membrane. Proc. nat. Acad. Sci. (Wash.)69, 3634–3637 (1972)

    Google Scholar 

  • Benzer, T. I., Raftery, M. A.: Solubilization and partial characterization of the tetrodotoxin binding component from nerve axons. Biochem. biophys. Res. Commun.51, 939–944 (1973)

    Google Scholar 

  • Bezanilla, F., Armstrong, C. M.: Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J. gen. Physiol.60, 588–608 (1972)

    Google Scholar 

  • Binstock, L., Lecar, H.: Ammonium ion currents in the squid giant axon. J. gen. Physiol.53, 342–361 (1969)

    Google Scholar 

  • Chandler, W. K., Meves, H.: Voltage clamp experiments on internally perfused giant axons. J. Physiol. (Lond.)180, 788–820 (1965)

    Google Scholar 

  • Cole, K. S., Moore, J. W.: Ionic current measurements in the squid giant axon membrane. J. gen. Physiol.44, 123–167 (1960)

    Google Scholar 

  • Colquhoun, D., Henderson, R., Ritchie, J. M.: The binding of labelled tetrodotoxin to nonmyelinated nerve fibres. J. Physiol. (Lond.)227, 95–126 (1972)

    Google Scholar 

  • Cuervo, L. A., Adelman, W. J.: Equilibrium and kinetic properties of the interaction between tetrodotoxin and the excitable membrane of the squid giant axon. J. gen. Physiol.55, 309 to 335 (1970)

    Google Scholar 

  • Eisenmann, G.: Cation selective glass electrodes and their mode of operation. Biophys. J.2, Suppl. 259–323 (1962)

    Google Scholar 

  • Evans, M. H.: Tetrodotoxin, saxitoxin and related substances: their application in neurobiology. Int. Rev. Neurobiol.15, 83–166 (1972)

    Google Scholar 

  • Goldman, D. E.: Potential, impedance, and rectification in membranes. J. gen. Physiol.27, 37–60 (1943)

    Google Scholar 

  • Hagiwara, S., Eaton, D. C., Stuart, A. E., Rosenthal, N. P.: Cation selectivity of the resting membrane of squid axon. J. Membrane Biol.9, 373–384 (1972)

    Google Scholar 

  • Henderson, R., Ritchie, J. M., Strichartz, G. R.: The binding of labelled saxitoxin to mammalian non-myelinated nerve fibres. J. Physiol. (Lond.)232, 53–54P (1973a)

    Google Scholar 

  • Henderson, R., Ritchie, J. M., Strichartz, G. R.: The binding of labelled saxitoxin to the sodium channels in nerve membranes. J. Physiol. (Lond.)235, 783–804 (1973b)

    Google Scholar 

  • Henderson, R., Wang, J. H.: Solubilization of a specific tetrodotoxin-binding component from garfish olfactory nerve membrane. Biochemistry11, 4565–4569 (1972)

    Google Scholar 

  • Hille, B.: The common mode of action of three agents that decrease the transient change in sodium permeability in nerves. Nature (Lond.)210, 1220–1222 (1966)

    Google Scholar 

  • Hille, B.: The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion. J. gen. Physiol.50, 1287–1302 (1967)

    Google Scholar 

  • Hille, B.: Pharmacological modifications of the sodium channels of frog nerve. J. gen. Physiol.51, 199–219 (1968)

    Google Scholar 

  • Hille, B.: Ionic channels in nerve membranes. Progr. Biophys. molec. Biol.21, 1–32 (1970)

    Google Scholar 

  • Hille, B.: The permeability of the sodium channel to organic cations in myelinated nerve. J. gen. Physiol.58, 599–619 (1971)

    Google Scholar 

  • Hille, B.: The permeability of the sodium channel to metal cations in myelinated nerve. J. gen. Physiol.59, 637–658 (1972)

    Google Scholar 

  • Hille, B.: Potassium channels in myelinated nerve: selective permeability to small cations. J. gen. Physiol.61, 669–686 (1973)

    Google Scholar 

  • Hodgkin, A. L.: Ionic movements and electrical activity in giant nerve fibres. Proc. roy. Soc. B148, 1–37 (1957)

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.)117, 500–544 (1952).

    Google Scholar 

  • Hodgkin, A. L., Katz, B.: The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.)108, 37–77 (1949)

    Google Scholar 

  • Kao, C. Y.: Tetrodotoxin, saxitoxin and their significance in the study of excitation phenomena. Pharmacol. Rev.18, 997–1049 (1966)

    Google Scholar 

  • Keynes, R. D., Ritchie, J. M., Rojas, E.: The binding of tetrodotoxin to nerve membranes. J. Physiol. (Lond.)213, 235–254 (1971)

    Google Scholar 

  • Keynes, R. D., Rojas, E.: Characteristics of the sodium gating current in the squid giant axon. J. Physiol. (Lond.)233, 28–30P (1973)

    Google Scholar 

  • Koppenhöfer, E.: Die Wirkung von TetraÄthylammoniumchlorid auf die Membranströme Ranvierscher Schnürringe vonXenopus laevis. Pflügers Arch. ges. Physiol.293, 34–55 (1967)

    Google Scholar 

  • Koppenhöfer, E., Vogel, W.: Wirkung von Tetrodotoxin und TetraÄthylammoniumchlorid an der Innenseite der Schnürringsmembran vonXenopus laevis. Pflügers Arch.313, 361–380 (1969)

    Google Scholar 

  • Lüttgau, H. C.: Weitere Untersuchungen über den passiven Ionentransport durch die erregbare Membran des Ranvierknotens. Pflügers Arch. ges. Physiol.273, 302–310 (1961)

    Google Scholar 

  • Meves, H., Shaw, T. I., Vogel, W.: Asymmetry currents in squid giant axons. Pflügers Arch.347, R33 (1974)

    Google Scholar 

  • Moore, J. W., Anderson, N., Blaustein, M., Takata, M., Lettvin, J. Y., Pickard, W. F., Bernstein, T., Pooler, J.: Alkali cation selectivity of squid axon membrane. Ann. N.Y. Acad. Sci.137, 818–829 (1966)

    Google Scholar 

  • Moore, J. W., Narahashi, T., Shaw, T. I.: An upper limit to the number of sodium channels in nerve membrane ? J. Physiol. (Lond.)188, 99–105 (1967)

    Google Scholar 

  • Mullins, L. J.: An analysis of conductance changes in squid axon. J. gen. Physiol.42, 1013–1035 (1959)

    Google Scholar 

  • Mullins, L. J.: A single channel or a dual channel mechanism for nerve excitation, J. gen. Physiol.52, 550–553 (1968)

    Google Scholar 

  • Narahashi, T.: Neurophysiological basis of drug action: Ionic mechanism, site of action and active form in nerve fibers. In: Adelman, W. J. (Ed.), Biophysics and physiology of excitable membranes, p. 439. New York: Van Nostrand-Reinhold 1971

    Google Scholar 

  • Narahashi, T., Anderson, N. C., Moore, J. W.: Tetrodotoxin does not block from inside the nerve membrane. Science153, 765–767 (1966)

    Google Scholar 

  • Narahashi, T., Moore, J. W.: A single or dual channel in nerve membranes ? J. gen. Physiol.52, 553–555 (1968)

    Google Scholar 

  • Overton, E.: BeitrÄge zur allgemeinen Muskel- und Nervenphysiologie. II. Mittheilung. über die Unentbehrlichkeit von Natrium (oder Lithium-) Ionen für den Contractionsact des Muskels. Pflügers Arch. ges. Physiol.92, 346–386 (1902)

    Google Scholar 

  • Schwarz, J. R., Ulbricht, W., Wagner, H.-H.: The rate of action of tetrodotoxin on myelinated nerve fibres ofXenopus laevis andRana esculenta. J. Physiol. (Lond.)233, 167–194 (1973)

    Google Scholar 

  • Tasaki, I., Hagiwara, S.: Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride. J. gen. Physiol.40, 859–885 (1957)

    Google Scholar 

  • Ulbricht, W.: The effect of veratridine on excitable membranes of nerve and muscle. Ergebn. Physiol.61, 18–71 (1969a)

    Google Scholar 

  • Ulbricht, W.: Effect of temperature on the slowly changing sodium permeability of veratrinized nodes of Ranvier. Pflügers Arch.311, 73–95 (1969b)

    Google Scholar 

  • Vierhaus, J., Ulbricht, W.: Effect of a sudden change in sodium concentration on repetitively evoked action potentials of single nodes of Ranvier. Pflügers Arch.326, 76–87 (1971a)

    Google Scholar 

  • Vierhaus, J., Ulbricht, W.: Rate of action of tetraethylammonium ions on the duration of action potentials of single nodes of Ranvier. Pflügers Arch.326, 88–100 (1971b)

    Google Scholar 

  • Wagner, H.-H., Ulbricht, W.: Interaction of tetrodotoxin and H ions at the nodal membrane. Pflügers Arch.339, R 70 (1973)

    Google Scholar 

  • Wagner, H.-H., Ulbricht, W.: Do TTX and H+ compete for the same site of the sodium channel ? Pflügers Arch.347, R34 (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft.

I should like to thank Drs. H.-H. Wagner and M. Mályusz for reading the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ulbricht, W. Ionic channels through the axon membrane (a review). Biophys. Struct. Mechanism 1, 1–16 (1974). https://doi.org/10.1007/BF01022556

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01022556

Key words

Navigation