Skip to main content
Log in

Numerische Berechnung der natürlichen Konvektion in einem waagerechten Kanal mit ungleichen Endtemperaturen

Numerical study of natural circulation in a horizontal duct with different end-temperatures

  • Published:
Wärme - und Stoffübertragung Aims and scope Submit manuscript

Abstract

The paper reports a finite difference solution for the natural counterflow generated in a horizontal adiabatic duct with different end-temperatures. Ducts with circular and rectangular cross-section are considered. The natural counterflow is modeled as fully-developed. The numerical results demonstrate that the flow consists of a strong axial counterflow superimposed on four secondary eddies situated in the four quadrants of the cross-section. The paper documents the temperature variation around the wall of a pipe, in a moderate Rayleigh number range not documented previously. The use of the wall temperature information in thermal stress analysis is discussed. The numerical results are also used to assess the applicability of analytical predictions for the flow field in ducts with rectangular cross-section.

Zusammenfassung

Die Arbeit berichtet über eine Lösung mit finiten Differenzen der natürlichen Gegenströmung in einem horizontalen adiabaten Kanal mit kreisförmigem oder rechteckigem Querschnitt bei ungleichen Endtemperaturen. Die natürliche Gegenströmung soll voll ausgebildet sein. Das Ergebnis zeigt, daß die Strömung aus einer starken axialen Gegenströmung und vier überlagerten sekundären Wirbeln in den vier Quadranten des Querschnitts besteht. Man erhält auch die Temperaturänderung längs der Rohrwand, wie sie für mäßige Rayleigh-Zahlen bisher nicht mitgeteilt wurde. Die Verwendung der berechneten Wandtemperatur bei Untersuchungen über thermischen Spannungen wird diskutiert. Die numerischen Ergebnisse wurden auch verwendet, um die Anwendbarkeit analytischer Voraussagen über das Strömungsfeld in rechteckigen Kanälen abzuschätzen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

aspect ratio, b/h

b:

horizontal dimension of rectangular crosssection

g:

gravitational acceleration

Gr:

Grashof number

h:

vertical dimension of rectangular crosssection

P:

pressure

r:

radial position

r0 :

pipe radius

Ra:

Rayleigh number

T:

temperature

ΔT/L:

longitudinal temperature gradient

u:

transversal velocity component (Fig.1)

v:

transversal velocity component (Fig.l)

w:

longitudinal velocity

x:

horizontal transversal position

y:

vertical transversal position

Y:

circumferential temperature distribution

z:

longitudinal position

()* :

dimensional quantity

α:

thermal diffusivity

β:

coefficient of thermal expansion

θ:

angular position

ν :

kinematic viscosity

ρ:

density

ψ:

streamfunction

ω :

vorticity function

r0 :

refers to Gr and Ha based on pipe radians

h:

refers to Gr and Ra based on h of rectangular cross-section

References

  1. Hong, S.W.: Natural circulation in horizontal pipe. Int. J. Heat Mass Trans. 20 (1977) 685–691

    Google Scholar 

  2. Schwoerer, J.A.; Smith, J.L., Jr.: Transient cooling of a fault-worthy superconducting electric generator. Paper presented at the Cryogenic Engineering Conference, Madison, Wisconsin (1979)

    Google Scholar 

  3. Bejan, A.; Tien, C.L.: Fully developed natural counterflow in a long horizontal pipe with different end temperatures. Int. J. Heat Mass Trans. 21 (1978) 701–708

    Google Scholar 

  4. Cormack, D.E.; Leal, L.G.; Imberger, J.: Natural convection in a shallow cavity with differentially heated end walls, Part 1. Asymptotic theory. J. Fluid Mechanics. 65 (1974) 209–229

    Google Scholar 

  5. Imberger, J.: Natural convection in a shallow cavity with differentially heated end walls, Part 3. Experimental results. J. Fluid Mechanics. 65 (1974) 247–260

    Google Scholar 

  6. Bejan, A.; Tien, C.L.: Laminar natural convection heat transfer in a horizontal cavity with different end temperatures. J. Heat Transfer. 100 (1978) 641–647

    Google Scholar 

  7. Torrance, K.E.: Comparison of finite-difference computation of natural convection. Journal of Research of National Bureau of Standards, 13. Mathematical Sciences. 72B, No. 4 (1968)

  8. Chow, L.C.; Tien, C.L.: An examination of four differencing schemes for some elliptic-type convection equations. Numerical Heat Transfer. 1 (1978) 87–100

    Google Scholar 

  9. Ames, W.H.: Numerical methods for partial differential equations. Chap. 3, New York: Academic Press (1977)

    Google Scholar 

  10. Bejan, A.; Tien, C.L.: Natural convection in horizontal space bounded by two concentric cylinders with different end temperatures. Int. J. Heat Mass Trans. 22 (1979) 919–927

    Google Scholar 

  11. Kimura, S.; Bejan, A.: Natural circulation in a horizontal duct with different end-temperatures. Report CUMER-80-2, Department of Mechanical Engineering, University of Colorado, Boulder

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, S., Bejan, A. Numerische Berechnung der natürlichen Konvektion in einem waagerechten Kanal mit ungleichen Endtemperaturen. Warme- und Stoffubertragung 14, 269–280 (1980). https://doi.org/10.1007/BF01618358

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01618358

Navigation