Skip to main content
Log in

Movement of oxybiotic and thiobiotic meiofauna in response to changes in pore-water oxygen and sulfide gradients around macro-infaunal tubes

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The effects of changes in vertical and horizontal microscale gradients of oxygen and sulfide on meiofaunal distributions were examined in laboratory microcosms. Specifically, the effect of tube abandonment and reestablishment by macro-infauna on the distribution of subsurface turbellarians, gnathostomulids and gastrotrichs was studied. Meiofauna responded rapidly (within 6 h) to changing sediment chemistry, consistently trying to reoccupy optimal habitat. Every subsurface taxon had a preferred suboptimal habitat which it occupied primarily during transit from deteriorating to newly established optimal habitat. Only during this time did the distribution of ecologically similar taxa overlap substantially. Changes in oxygen and sulfide gradients could explain most but not all of the response; food availability might also be important. Oxybios consistently chose oxic suboptimal microhabitat. Thus behaviorally, as well as biochemically and ecologically, thiobios represent a distinct group among the meiofauna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Aller, J. Y., Aller, R. C. (1986). Evidence for localized enhancement of biological activity associated with tube and burrow structures in deep-sea sediments at the HEBBLE site, western North Atlantic. Deep-Sea Res. 33: 755–790

    Google Scholar 

  • Aller, R. C. (1983). The importance of the diffusive permeability of animal burrow linings in determining marine sediment chemistry. J. mar. Res. 41: 299–322

    Google Scholar 

  • Aller, R. C. (1984). The importance of relict burrow structrues and burrow irrigation in controlling sedimentary solute distributions. Geochim. cosmochim. Acta 48: 1929–1934

    Google Scholar 

  • Aller, R. C., Yingst, J. Y. (1978). Biogeochemistry of tube-dwellings: a study of the sedentary polychaete Amphitrite ornata (Leidy). J. mar. Res. 36: 201–254

    Google Scholar 

  • Aller, R. C., Yingst, J. Y. (1985). Effects of the marine depositfeeders Heteromastus filiformis (Polychaeta), Macoma balthica (Bivalvia), and Tellina texana (Bivalvia) on average sedimentary solute transport, reaction rates, and microbial distributions. J. mar. Res. 43: 615–645

    Google Scholar 

  • Aller, R. C., Yingst, J. Y., Ullman, W. J. (1983). Comparative biogeochemistry of water in intertidal Onuphus (Polychaeta) and Upogebia (Crustacea) burrows: temporal patterns and causes. J. mar. Res. 41: 571–604

    Google Scholar 

  • Alongi, D. M. (1985). Microbes, meiofauna, and bacterial productivity on tubes constructed by the polychaete Capitella capitata. Mar. Ecol. Prog. Ser. 23: 207–208

    Google Scholar 

  • Baillie, P. W. (1986). Oxygenation of intertidal estuarine sediments by benthic microalgal photosynthesis. Estuar. cstl Shelf Sci 22: 143–159

    Google Scholar 

  • Bark, A. W., Goodfellow, J. G. (1985). Studies on ciliated Protozoa in eutrophic lakes: 2. Field and laboratory studies on the effects of oxygen and other chemical gradients on ciliate distribution. Hydrobiologia 124: 177–188

    Google Scholar 

  • Bell, S. S. (1983). An experimental study of the relationship between below-ground structure and meiofaunal taxa. Mar. Biol. 76: 33–39

    Google Scholar 

  • Bell, S. S., Woodin, S. A. (1984). Community unity: experimental evidence for meiofauna and macrofauna. J. mar. Res. 42: 605–632

    Google Scholar 

  • Berghe, M. V., Bergmans, M. (1981). Differential food preferences in three co-occuring species of Tisbe (Copepoda, Harpacticoida). Mar. Ecol. Prog. Ser. 4: 213–219

    Google Scholar 

  • Berner, R. A. (1963). Electrode studies of hydrogen sulfide in marine sediments. Geochim. cosmochim. Acta 27: 563–575

    Google Scholar 

  • Boaden, P. J. S. (1975). Anaerobiosis, meiofauna and early metazoan evolution. Zoologica Scr. 4: 21–24

    Google Scholar 

  • Boaden, P. J. S. (1977). Thiobiotic facts and fancies (aspects of the distribution and evolution of anaerobic meiofauna). Mikrofauna Meeresbod. 61: 45–63

    Google Scholar 

  • Boaden, P. J. S., Platt, H. M. (1971). Daily migration patterns in an intertidal meiobenthic community. Thalassia jugosl. 7: 1–12

    Google Scholar 

  • Carman, K. R., Thistle, D. (1985). Microbial food partitioning by three species of benthic copepods. Mar. Biol. 88: 143–148

    Google Scholar 

  • Crezee, M. (1976). Solenofilomorphidae (Acoela): major component of a new turbellarian association in the sulfide system. Int. Revue ges. Hydrobiol. 61: 105–129

    Google Scholar 

  • Decho, A. W., Castenholz, R. W. (1986). Spatial patterns and feeding of meiobenthic copepods in relation to resident microbial flora. Hydrobiologia 131: 87–96

    Google Scholar 

  • Eckman, J. E. (1985). Flow disruption by an animal-tube mimic affects sediment bacterial colonization. J. mar. Res. 43: 419–435

    Google Scholar 

  • Farris, R. A., Lindgren, E. W. (1984). A posteriori investigation of spatial arrangements in Gnathostomulida and Copepoda. Int. Revue ges. Hydrobiol. 69: 443–450

    Google Scholar 

  • Felbeck, H., Liebezeit, G., Dawson, R., Giere, O. (1983). CO2 fixation in tissues of marine oligochaetes (Phallodrilus leukodermatus and P. planus) containing symbiotic, chemoautotrophic bacteria. Mar. Biol. 75: 187–191

    Google Scholar 

  • Fenchel, T. M. (1968). The ecology of marine microbenthos, II. The food of marine benthic ciliates. Ophelia 5: 73–121

    Google Scholar 

  • Fenchel, T. M., Jørgensen, B. B. (1977). Detritus food chains of aquatic ecosystems: the role of bacteria. Adv. microb. Ecol. 1: 1–58

    Google Scholar 

  • Fenchel, T. M., Riedl, R. J. (1970). The sulfide system: a new biotic community underneath the oxidized layer of marine sand bottoms. Mar. Biol. 7: 255–268

    Google Scholar 

  • Fox, C. A., Powell, E. N. (1986). Meiofauna and the sulfide system: the effects of oxygen and sulfide on the adenylate pool of 3 turbellarians and a gastrotrich. Comp. Biochem. Physiol. 85A: 37–44

    Google Scholar 

  • Fox, C. A., Powell, E. N. (1987). The effect of oxygen and sulfide on CO2 production by three acoel turbellarians. Are thiobiotic meiofauna aerobic? Comp. Biochem. Physiol. 86A: 509–514

    Google Scholar 

  • Gamble, J. C. (1971). The responses of the marine amphipods Corophium arenarium and C. volutator to gradients and to choices of different oxygen concentrations. J. exp. Biol. 54: 275–290

    Google Scholar 

  • Giere, O., Liebezeit, G., Dawson, R. (1982). Habitat conditions and distribution pattern of the gutless oligochaete Phallodrilus leukodermatus. Mar. Ecol. Prog. Ser. 8: 291–299

    Google Scholar 

  • Gray, J. S., Johnson, R. M. (1970). The bacteria of a sandy beach as an ecological factor affecting the interstitial gastrotrich Turbanella hyalina Schultz. J. exp. mar. Biol. Ecol. 4: 119–133

    Google Scholar 

  • Hummon, W. D. (1974). Intertidal marine Gastrotricha from Columbia. Bull. mar. Sci. 24: 396–408

    Google Scholar 

  • Jensen, P. (1987). Differences in microhabitat, abundance, biomass and body size between oxybiotic and thiobiotic free-living marine nematodes. Oecologia 71: 564–567

    Google Scholar 

  • Jørgensen, B. B. (1977). The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr. 22: 814–832

    Google Scholar 

  • Kristensen, E. (1981). Direct measurement of ventilation and oxygen uptake in three species of tubiculous polychaetes (Nereis spp.). J. comp. Physiol. 145: 45–50

    Google Scholar 

  • Meadows, P. S., Deans, E. A., Anderson, J. G. (1981). Responses of Corophium volutator to sediment sulphide. J. mar. biol. Ass. U.K. 61: 739–748

    Google Scholar 

  • Meyers, M. B., Fossing H., Powell, E. N. (1987). Micro-distribution of interstitial meiofauna, oxygen and sulfide gradients, and the tubes of macro-infauna. Mar. Ecol. Prog. Ser. 35: 223–241

    Google Scholar 

  • Okubo, A. (1980). Diffusion and ecological problems: mathematical models. Springer-Verlag, New York

    Google Scholar 

  • Ott, J. A. (1972). Determination of faunal boundaries of nematodes in an intertidal sand flat. Int. Revue ges. Hydrobiol. 57: 645–663

    Google Scholar 

  • Powell, E. N. (1977). Particle size selection and sediment reworking in a funnel feeder, Leptosynapta tenuis (Holothuroidea, Synaptidae). Int. Revue ges. Hydrobiol. 62: 385–408

    Google Scholar 

  • Powell, E. N., Bright, T. J. (1981). A thiobios does exist-gnathostomulid domination of the canyon community at the East Flower Garden brine seep. Int Revue ges. Hydrobiol. 66: 675–683

    Google Scholar 

  • Powell, E. N., Bright, T. J., Woods, A., Gittings, S. (1983). Meiofauna and the thiobios in the East Flower Garden brine seep. Mar. Biol. 73: 269–283

    Google Scholar 

  • Powell, E. N., Crenshaw, M. A., Rieger, R. M. (1979). Adaptations to sulfide in the meiofauna of the sulfide system. I. 35S-sulfide accumulation and the presence of a sulfide detoxification system. J. exp. mar. Biol. Ecol. 37: 57–76

    Google Scholar 

  • Powell, E. N., Crenshaw, M. A., Rieger, R. M. (1980). Adaptations to sulfide in sulfide-system meiofauna. End products, of sulfide detoxification in three turbellarians and a gastrotrich. Mar. Ecol. Prog. Ser. 2: 169–177

    Google Scholar 

  • Ray, A. J., Aller, R. C. (1985). Physical irrigation of relict burrows: implications for sediment chemistry. Mar. Geol. 62: 371–379

    Google Scholar 

  • Reise, K. (1981a). Gnathostomulida abundant alongside polychaete burrows. Mar. Ecol. Prog. Ser. 6: 329–333

    Google Scholar 

  • Reise, K. (1981b). High abundance of small zoobenthos around biogenic structures in tidal sediments of the Wadden Sea. Helgoländer wiss. Meeresunters. 34: 413–425

    Google Scholar 

  • Reise, K. (1983a). Biotic enrichment of intertidal sediments by experimental aggregates of the deposit-feeding bivalve Macoma balthica. Mar. Ecol. Prog. Ser. 12: 229–236

    Google Scholar 

  • Reise, K. (1983b). Experimental removal of lugworms from marine sand affects small zoobenthos. Mar. Biol. 74: 327–332

    Google Scholar 

  • Reise, K. (1984). Free-living Platyhelminthes (Turbellaria) of a marine sand flat: an ecological study. Mikrofauna mar. 1: 1–62

    Google Scholar 

  • Reise, K., Ax, P. (1979). A meiofaunal “thiobios” limited to the anaerobic sulfide system of marine sand does not exist. Mar. Biol. 54: 225–237

    Google Scholar 

  • Revsbech, N. P. (1983). In-situ measurement of oxygen profiles of sediments by use of oxygen micro-electrodes. In: Gnaiger, E., Forstner, H. (eds.) Polarographic oxygen sensors. Springer Verlag, Berlin, p. 265–273

    Google Scholar 

  • Revsbech, N. P., Jørgensen, B. B., Blackburn, T. H. (1980a). Oxygen in the sea bottom measured with a microelectrode. Science (Wash., D. C.) 207: 1355–1356

    Google Scholar 

  • Revsbech, N. P., Jørgensen, B. B., Blackburn, T. H., Cohen, Y. (1983). Microelectrode studies of the photosynthesis and O2, H2S, and pH profiles of a microbial mat. Limnol. Oceanogr. 28: 1062–1074

    Google Scholar 

  • Revsbech, N. P., Sørensen, J., Blackburn, T. H., Lumholt, J. P. (1980b) Distribution of oxygen in marine sediments measured with microelectrodes. Limnol. Oceanogr. 25: 403–411

    Google Scholar 

  • Revsbech, N. P., Ward, D. M. (1983). Oxygen microelectrode that is insensitive to medium chemical composition: use in an acid microbial mat dominated by Cyanidium caldarium. Appl. envirl Microbiol. 45: 755–759

    Google Scholar 

  • Revsbech, N. P., Ward, D. M. (1984). Microprofiles of dissolved substances and photosynthesis in microbial mats measured with microelectrodes. In: Cohen, Y., Castenholz, R. W., Halvorson, H. W. (eds.) Microbial mats: stromatolites. Alan R. Liss Inc., New York, p. 171–188

    Google Scholar 

  • Schäfer, W. (1972). Ecology and palaeoecology of marine environments. The University of Chicago Press, Chicago

    Google Scholar 

  • Shick, J. M. (1976). Physiological and behavioral responses to hypoxia and hydrogen sulfide in the infaunal asteroid Ctenodiscus crispatus. Mar. Biol. 37: 279–289

    Google Scholar 

  • Sørensen, J. Jørgensen, B. B., Revsbech, N. P. (1979). A comparison of oxygen, nitrate, and sulfate respiration in coastal marine sediments. Microb. Ecol. 5: 105–115

    Google Scholar 

  • Sterrer, W., Rieger, R. (1974). Retronectidae — a new cosmopolitan marine family of Catenulida (Turbellaria). In: Riser, N., Morse, M. (eds.) The biology of the Turbellaria. McGraw-Hill Book Co., New York, p. 63–92

    Google Scholar 

  • Waslenchuk, D. G., Matson, E. A., Zajac, R. N., Dobbs, F. C., Tramontano, J. M. (1983). Geochemistry of burrow waters vented by a bioturbating shrimp in Bermudian sediments. Mar. Biol. 72: 219–225

    Google Scholar 

  • Watzin, M. C. (1985). Interactions among temporary, and permanent meiofauna: observations on the feeding and behavior of selected taxa. Biol. Bull. mar. biol. Lab. Woods Hole 169: 397–416

    Google Scholar 

  • Wieser, W., Ott, J., Schiemer, F., Gnaiger, E. (1974). An ecophysiological study of some meiofauna species inhabiting a sandy, beach at Bermuda. Mar. Biol. 26: 235–248

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. S. Carney, Baton Rouge

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyers, M.B., Powell, E.N. & Fossing, H. Movement of oxybiotic and thiobiotic meiofauna in response to changes in pore-water oxygen and sulfide gradients around macro-infaunal tubes. Marine Biology 98, 395–414 (1988). https://doi.org/10.1007/BF00391116

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00391116

Keywords

Navigation