Skip to main content
Log in

Properties of visual interneurons in a deep-sea mysid, Gnathophausia ingens

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Adult Gnathophausia ingens, a bioluminescent deep-sea mysid, were collected off the California coast and brought, protected from the light, to the Marine Laboratory of the University of California, Santa Barbara (UCSB) for single-unit recordings of afferent visual interneurons. These units, which traverse the optic stalk, were classified according to their response to light stimuli varying in intensity, duration and area. The most common were sustaining fibers responding throughout a continuous stimulus. The only other type, “on” fibers, showed a transient response without reference to stimulus movement. Sustaining fibers responded to irradiances as low as, 2.7×103 photons cm-2s-1sr-1, and were characterized by long temporal summations and large receptive fields. These are characteristics of a visual system adapted for maximizing sensitivity. However, the transient response of the “on” fibers also suggests a capability to react to rapidly changing light sources such as bioluminescence, a matter of importance since this mysid requires dietary coelenterazine to sustain its luminescent system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aho AC, Donner K, Hyden C, Larson LO, Reuter T (1988) Low retinal noise in animals with low body temperature allows high visual sensitivity. Nature, Lond 334: 348–350

    Google Scholar 

  • Aho AC, Donner K, Reuter T (1993) Retinal origins of the temperature effect on absolute sensitivity in frogs. J Physiol 463: 501–521

    Google Scholar 

  • Barlow HB (1958) Temporal and spatial summation in human vision at different backgroud intensities. J Physiol 141: 337–350

    Google Scholar 

  • Barlow RB, Jr, Birge RR, Kaplan E, Tallent JR (1993) On the molecular origin of photoreceptor noise. Nature, Lond 366: 64–66

    Google Scholar 

  • Barlow RB, Jr, Kaplan E, Renninger GH, Saito T (1987) Circadian rhythms in Limulus photoreceptors. J gen Physiol 89: 353–378

    Google Scholar 

  • Boden BP, Kampa EM, Snodgrass JM (1960) Underwater daylight measurements in the Bay of Biscay. J mar biol Ass UK 39: 227–238

    Google Scholar 

  • Campbell AK, Herring PJ (1990) Imidazolopyrazine bioluminescence in copepods and other marine organisms. Mar Biol 104: 219–225

    Google Scholar 

  • Childress JJ, Barnes AT, Quentin LB, Robison BH (1977) Thermally protecting cod ends for the recovery of living deep-sea animals. Deep Sea Res 25: 419–422

    Google Scholar 

  • Childress JJ, Price MH, (1978) Growth rate of the bathypelagic crustacean Gnathophausia ingens (Mysidacea: Lophogastridae). I. Dimensional growth and population structure. Mar Biol 50: 47–62

    Google Scholar 

  • Clarke GL, Denton EJ (1962) Light and animal life. In: Hill MN (ed) The Sea. Vol 1 Interscience, New York, London, p 456–468

    Google Scholar 

  • Denton EJ, Warren FJ (1957) Photosensitive pigments in the retinae of deep-sea fish. J mar biol Ass UK 36: 651–662

    Google Scholar 

  • Denys CJ, Brown PK (1982) Euphausiid visual pigments. J gen Physiol 80: 451–471

    Google Scholar 

  • Doujak FE (1985) Can a shore crab see a star? J exp Biol 116: 385–393

    Google Scholar 

  • Fermi G, Reichardt W (1963) Optomotorische Reaktionen der Fliege Musca domestica Kybernetik 2: 15–28

    Google Scholar 

  • Fernandez HRC (1978) Vistral pigments of bioluminescent and nonbioluminescent deep-sea fish. Vision Res 19: 589–692

    Google Scholar 

  • Franceschini N, Riehle A, Le Nestour A (1989) Directionally selective motiondetection by insect neurons. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer-Verlag, New York, p 360–390

    Google Scholar 

  • Frank TM, Case JF (1988a) Visual spectral sensitivity of bioluminescent deep-sea crustaceans. Biol Bull mar biol Lab, Woods Hole 175: 261–273

    Google Scholar 

  • Frank TM, Case JF (1988b) Visual spectral sensitivity of the bioluminescent deep-sea mysid, Gnathophausia ingens. Biol Bull mar biol Lab, Woods Hole 175: 274–283

    Google Scholar 

  • Frank, T, Widder EA, Latz MI, Case JF (1984) Dietary maintenance of bioluminescence in a deep-sea mysid. J exp Biol 109: 385–389

    Google Scholar 

  • Gaten E, Shelton PMJ, Herring PJ (1992) Regional morphological variations in the compound eyes of certain mesopelagic shrimps in relation of their depth. J mar biol Ass UK 72: 61–75

    Google Scholar 

  • Herring PJ (1983) The spectral characteristics of luminous marine organisms. Proc R Soc (Ser B) 220: 183–217

    Google Scholar 

  • Herring PJ (1985) Bioluminescence in the Crustacea. J Crustacean Biol 5: 557–573

    Google Scholar 

  • Herring PJ Morin JG (1978) Bioluminescence in fishes. In: Herring PJ (ed) Bioluminescence in action. Academic Press Inc, London p 273–329

    Google Scholar 

  • Hiller-Adams P, Case JF (1984) Optical parameters of euphausiid eyes as a function of habitat depth. J comp Physiol 154: 307–318

    Google Scholar 

  • Hiller-Adams P, Widder EA, Case JF (1988) The visual pigments of four deep-sea grustacean species. J comp Physiol 163: 63–72

    Google Scholar 

  • Jerlov NG (1968) Optical oceanography. Elsevier, Amsterdam

    Google Scholar 

  • Land ME (1981) Optics and vision in invertebrates. In: Autrum H (ed) Handbook of sensory physiology. Vol VII/6B. Springer-Verlag, Berlin, Heidelberg, New York, p 471–592

    Google Scholar 

  • Land MF (1992) Locomotion and visual behavior of mid-water crustaceans. J mar biol Ass UK 72: 41–60

    Google Scholar 

  • Laughlin SB (1981) Neural principles in the peripheral visual systems of invertebrates. In: Autrum H (ed) Handbook of sensory biology. Vol VII/6B. Springer-Verlag, Berlin, Heidelberg, New York, p 133–280

    Google Scholar 

  • Laughlin SB, (1990) Invertebrate vision at low luminances. In: Hess RF, Sharpe LT, Nordby K (eds.) Night vision. Cambridge University Press, Cambridge, England, p 223–250

    Google Scholar 

  • Locket NA (1971) Retinal anatomy in some scopelarchid deep-sea fishes. Proc R Soc (Ser B) 178: 161–184

    Google Scholar 

  • Loew ER (1976) Light and photoreceptor degeneration in the Norway lobster, Nephrops norvegicus. Proc R Soc (Ser B) 193: 31–44

    Google Scholar 

  • Munk O (1966) Ocular anatomy of some deep-sea teleosts. Dana Rep 70: 1–62

    Google Scholar 

  • Nilsson HL, Lindström M (1983) Retinal damage and sensitivity loss of a light-sensitive crustacean compound eye (Cirolana borealis): electron microscopy and electrophysiology. J exp Biol 107: 277–292

    Google Scholar 

  • Partridge JC, Archer SN, Van Oostrum J (1992) Single and multiple visual pigments in deep-sea fishes. J mar biol Ass UK 72: 113–130

    Google Scholar 

  • Payne R, Howard J (1981) Response of an insect photoreceptor: a simple log-normal model. Nature, Lond 290: 415–416

    Google Scholar 

  • Purple RL, Dodge FA (1965) Interaction of excitation and inhibition in the eccentric cell in the eye of Limulus. Cold Spring Harb Symp quant Biol 30: 529–537

    Google Scholar 

  • Ratliff F, Hartline HK (1974) Studies on excitation and inhibition in the retina. Chapman & Hall, London

    Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry The principles and practioe of statistics in biological research. 2nd ed Freeman WH & Co. New York

    Google Scholar 

  • Srinivasan MV, Laughlin SB, Dubs A (1982) Predictive coding: a fresh view of inhibition in the retina. Proc R Soc (Ser B) 216: 427–459

    Google Scholar 

  • Stevens CF (1964) A quantitative theory of neural interactions: theoretical and experimental investigations. Thesis, Rockefeller Institute, New York

    Google Scholar 

  • Warrant EJ, McIntyre PD (1991) Strategies for retinal design in arthropod eyes of low F-number. J comp Physiol 168: 499–512

    Google Scholar 

  • Waterman TH, Wiersma CAG (1963) Electrical responses in decapod crustacean visual systems. J cell comp Physiol 61: 1–16

    Google Scholar 

  • Waterman TH Wiersma CAG, Bush BMH (1964) Afferent visual responses in the optic nerve of the crab, Podophthalmus J cell comp Physiol 63: 135–155

    Google Scholar 

  • Widder EA, Latz MI, Case JF (1983) Marine bioluminescence spectra measured with an optical multichannel detection system. Biol Bull mar biol Lab, Woods Hole 165: 791–810

    Google Scholar 

  • Wiersma CAG, Roach JLM, Glantz RM (1982) Neural integration in the optical system. In: The biology of Crustacea. Vol 4. Academic Press Inc, New York, p 1–31

    Google Scholar 

  • Wiersma CAG, Yamaguchi T (1966) The neuronal components of the optic nerve of the crayfish as studied by single unit analysis. J comp Neurol 128: 333–358

    Google Scholar 

  • Young RE, Kampa EM, Maynard SD, Mencher FM, Roper CFE (1980) Counterillumination and the upper depth limits of midwater animals. Deep-Sea Res 27: 671–691

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by M. G. Hadfield, Honolulu

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moeller, J.F., Case, J.F. Properties of visual interneurons in a deep-sea mysid, Gnathophausia ingens . Marine Biology 119, 211–219 (1994). https://doi.org/10.1007/BF00349559

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349559

Keywords

Navigation