Skip to main content
Log in

Nocturnal synthesis and diurnal degradation of phytoplankton biomass in surface waters

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Natural populations of phytoplankton were collected near the Bay of Bourgneuf, France, in spring 1982, and were subjected to natural surface irradiance outdoors. They exhibited exponential growth on time scales of a week, but significant decreases in biomass indicators such as chlorophyll a and particulate nitrogen were observed during daytime. At night, these decreases were more than compensated by increases in the same biomass variables, which could double over 12 h of darkness. These features are characteristic of phytoplankton populations in surface waters which cannot escape high irradiances, and may be representative of situations in incubation bottles held at fixed depths near the surface. Under such conditions, a decrease in biomass during daytime should not necessarily be interpreted as irreversible damage unless growth measurements are carried out over the following night hours to check for possible recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Admiraal, W., Riaux-Gobin, C., Laane, R. W. P. M. (1987). Interactions of ammonium, nitrate, and D- and L-amino acids in the nitrogen assimilation of two species of estuarine benthic diatoms. Mar. Ecol. Prog. Ser. 40: 267–273

    Google Scholar 

  • Aparicio, P. J., Azuara, M. P. (1984). Wavelength dependence of nitrite release and the effects of different nitrogen sources and CO2 tensions on Chlamydomonas reinhardii inorganic nitrogen metabolism. In: Senger, H. (ed.) Blue light effects in biological systems. Springer-Verlag, Berlin, p. 196–206

    Google Scholar 

  • Banse, K. (1977). Determining the carbon-to-chlorophyll ratio of natural phytoplankton. Mar. Biol. 41: 199–212

    Google Scholar 

  • Chan, Y. K., Campbell, N. E. R. (1978). Phytoplankton uptake and excretion of assimilated nitrate in a small Canadian shield lake. Appl. envirl Microbiol. 35: 1052–1060

    Google Scholar 

  • Collos, Y. (1987). Calculations of 15N uptake rates by phytoplankton assimilating one or several nitrogen sources. Int. J. appl. Radiat. Isotopes. 38: 275–282

    Google Scholar 

  • Collos, Y., Slawyk, G. (1984). 13C and 15N uptake by marine phytoplankton. III. Interactions in euphotic zone profiles of stratified oceanic areas. Mar. Ecol. Prog. Ser. 19: 223–231

    Google Scholar 

  • Collos, Y., Slawyk, G., Abboud-Abi Saab, M., Peneda, M. C. (1985). Biomasse phytoplanctonique et production primaire en termes d'azote et de carbone: aspects méthodologiques. Océanis, Paris 11: 461–479

    Google Scholar 

  • Cuhel, R. L., Ortner, R. B., Lean, D. R. S. (1984). Night synthesis of protein by algae. Limnol. Oceanogr. 29: 731–744

    Google Scholar 

  • Dugdale, R. C., Goering, J. J. (1967). Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12: 196–206

    Google Scholar 

  • Dugdale, R. C., Wilkerson, F. P. (1986). The use of 15N to measure nitrogen uptake in eutrophic oceans; experimental considerations. Limnol. Oceanogr. 31: 673–689

    Google Scholar 

  • Durzan, D. J., Steward, F. C. (1983). Nitrogen metabolism. In: Steward, F. C. (ed.) Plant physiology. VIII. Academic Press, Orlando

    Google Scholar 

  • Eisele, R., Ullrich, W. R. (1975). Stoichiometry between photosynthetic nitrate reduction and alkalinisation by Ankistrodesmus braunii in vivo. Planta 123: 117–123

    Google Scholar 

  • Eppley, R. W., Coatsworth, J. L., Solórzano, L. (1969). Studies on nitrate reductase in marine phytoplankton. Limnol. Oceanogr. 14: 194–205

    Google Scholar 

  • Falkowski, P. G. (1981). Light-shade adaptation and assimilation numbers. J. Plankton Res. 3: 203–216

    Google Scholar 

  • Garside, C., Glibert, P. M. (1984). Computer modeling of 15N uptake and remineralization experiments. Limnol. Oceanogr. 29: 199–204

    Google Scholar 

  • Gieskes, W. W. C., Kraay, G. W., Baars, M. A. (1979). Current 14C methods for measuring primary production: gross underestimates in oceanic waters. Neth. J. Sea Res 13: 58–78

    Google Scholar 

  • Glibert, P. M., Dennett, M. R., Goldman, J. C. (1985). Inorganic carbon uptake by phytoplankton in Vineyard Sound, Massachusetts. II. Comparative primary productivity and nutritional status of winter and summer assemblages. J. exp. mar. Biol. Ecol. 86: 101–118

    Google Scholar 

  • Glooschenko, W. A., Curl, H. Jr., Small, L. F. (1972). Diel periodicity of chlorophyll a concentration in Oregon coastal waters. J. Fish. Res. Bd Can. 29: 1253–1259

    Google Scholar 

  • Goldman, J. C., Dennett, M. R., Riley, C. A. (1981). Marine phytoplankton photosynthesis and transient ammonium availability. Mar. Biol. Lett. 2: 323–331

    Google Scholar 

  • Jones, K., Stewart, W. D. P. (1969). Nitrogen turnover in marine and brackish habitats. III. The production of extracellular nitrogen by Calothrix scopulorum. J. mar. biol. Ass. U.K. 49: 475–488

    Google Scholar 

  • Kiefer, D. A., Atkinson, C. A. (1984). Cycling of nitrogen by plankton: a hypothetical description based upon efficiency of energy conversion. J. mar. Res. 42: 655–675

    Google Scholar 

  • Koroleff, F. (1983). Determination of ammonia. In: Grasshof, K., (ed.) Methods of seawater analysis. Verlag Chemie, Weinheim

    Google Scholar 

  • Laws, E. A. (1985). Analytic models of NH4 uptake and regeneration experiments. Limnol. Oceanogr. 30: 1340–1350

    Google Scholar 

  • Lee, C., Cronin, C. (1982). The vertical flux of particulate organic nitrogen in the sea: decomposition of amino acids in the Peru upwelling area and the equatorial Atlantic. J. mar. Res. 40: 227–251

    Google Scholar 

  • MacIsaac, J. J. (1978). Diel cycles of inorganic nitrogen uptake in a natural phytoplankton population dominated by Gonyaulax polyedra. Limnol. Oceanogr. 23: 1–9

    Google Scholar 

  • Maestrini, S. Y., Kossut, M. G., Reynaud, C. P. (1978). esAnálise do nitrogênio e do carbono particular por pirólise e separação em fase gasosa. Publções Inst. Pesq. mar. 126: 1–40 (Nota téc. No. 126, Ministério da Marinha, Rio de Janeiro, Brasil)

    Google Scholar 

  • Maestrini, S. Y., Robert, J. M. (1981). Rendements d'utilisation des sels nutritifs et variations de l'état des cellules de trois diatomées de claires à huitres de Vendée. Oceanol. Acta 4: 13–21

    Google Scholar 

  • Maestrini, S. Y., Robert, J. M., Leftley, J. W., Collos, Y. (1986). Ammonium thresholds for simultaneous uptake of ammonium and nitrate by oyster-pond algae. J. exp. mar. Biol. Ecol. 102: 75–98

    Google Scholar 

  • Maestrini, S. Y., Robert, J. M., Truquet, I. (1982). Simultaneous uptake of ammonium and nitrate by oyster-pond algae. Mar. Biol. Lett. 3: 143–153

    Google Scholar 

  • Mopper, K., Lindroth, P. (1982). Diet and depth variations in dissolved free amino acids and ammonium in the Baltic Sea determined by shipboard HPLC analysis. Limnol. Oceanogr. 27: 336–347

    Google Scholar 

  • Perry, M. J., Talbot, M. C., Alberte, R. S. (1981). Photoadaptation in marine phytoplankton: response of the photosynthetic unit. Mar. Biol. 62: 91–101

    Google Scholar 

  • Price, N. M., Cochlan, W. P., Harrison, P. J. (1985). Time course of uptake of inorganic and organic nitrogen by phytoplankton in the Strait of Georgia: comparison of frontal and stratified communities. Mar. Ecol. Prog. Ser. 27: 39–53

    Google Scholar 

  • Prochazkova, L., Blazka, P., Kralova, M. (1970). Chemical changes involving nitrogen metabolism in water and particulate matter during primary production experiments. Limnol. Oceanogr. 15: 797–807

    Google Scholar 

  • SCOR-UNESCO. (1966). Determination of photosynthetic pigments in sea water. Monogr. oceanogr. Methodol. (UNESCO) 1: 1–69

    Google Scholar 

  • Sournia, A. (1974). Circadian periodicities in natural populations of marine phytoplankton. Adv. mar. Biol. 12: 325–389

    Google Scholar 

  • Steemann Nielsen, E. (1952). The use of radioactive carbon (14C) for measuring organic production in the sea. J. Cons. perm. int. Explor. Mer 18: 117–140

    Google Scholar 

  • Strickland, J. D. H. (1965). Production of organic matter ii the primary stages of the marine food chain. In: Riley, J. P. and Skirrow, G. (eds.) chemical oceanography. 1. Academic Press, New York, p. 477–610

    Google Scholar 

  • Strickland, J. D. H., Parsons, T. R. (1972). A practical handbook of seawater analysis, 2nd ed. Bull. Fish. Res. Bd Can 167: 1–310

    Google Scholar 

  • Venrick, E. L., Beers, J. R., Heinbokel, J. F. (1977). Possible consequences of containing microplankton for physiological rate measurements. J. exp. mar. Biol. Ecol. 26: 55–76

    Google Scholar 

  • Yentsch, C. S., Ryther, J. R. (1957). Short-term variations in phytoplankton chlorophyll and their significance. Limnol. Oceanogr. 2: 140–142

    Google Scholar 

  • Zevenboom, W., Mur, L. R. (1981). Simultaneous short-term uptake of nitrate and ammonium by Oscillatoria agardhii grown in nitrate- or light-limited continuous culture. J. gen. Microbiol. 126: 355–363

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. M. Pérès, Marseille

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collos, Y., Maestrini, S.Y. & Robert, J.M. Nocturnal synthesis and diurnal degradation of phytoplankton biomass in surface waters. Mar. Biol. 101, 457–462 (1989). https://doi.org/10.1007/BF00541647

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00541647

Keywords

Navigation