Skip to main content
Log in

Strongly positive semigroups and faithful invariant states

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let (ℳ, τ, ω) denote aW*-algebra ℳ, a semigroupt>0↦τ t of linear maps of ℳ into ℳ, and a faithful τ-invariant normal state ω over ℳ. We assume that τ is strongly positive in the sense that

$$\tau _t (A^ * A) \geqq \tau _t (A)^ * \tau _t (A)$$

for allA∈ℳ andt>0. Therefore one can define a contraction semigroupT on ℋ=\(\overline {\mathcal{M}\Omega } \) by

$$T_t A\Omega = \tau _t (A)\Omega ,{\rm A} \in \mathcal{M},$$

where Ω is the cyclic and separating vector associated with ω. We prove

1. the fixed points ℳ(τ) of τ are given by ℳ(τ)=ℳ∩T′=ℳ∩E′, whereE is the orthogonal projection onto the subspace ofT-invariant vectors,

2. the state ω has a unique decomposition into τ-ergodic states if, and only if, ℳ(τ) or {ℳυE}′ is abelian or, equivalently, if (ℳ, τ, ω) is ℝ-abelian,

3. the state ω is τ-ergodic if, and only if, ℳυE is irreducible or if

$$\mathop {\inf }\limits_{\omega '' \in Co\omega 'o\tau } \left\| {\omega '' - \omega '} \right\| = 0$$

for all normal states ω′ where Coω′°τ denotes the convex hull of {ω′°τ t } t>0.

Subsequently we assume that τ is 2-positive,T is normal, andT* t +Ω\( \subseteqq \overline {\mathcal{M}_ + \Omega } \), and then prove

4. there exists a strongly positive semigroup |τ| which commutes with τ and is determined by

$$\left| \tau \right|_t \left( A \right)\Omega = \left| {T_t } \right|A\Omega ,$$

5. results similar to 1 and 2 apply to |τ| but the τ-invariant state ω is |τ|-ergodic if, and only if,

$$\mathop {\lim }\limits_{t \to \infty } \left\| {\omega 'o\tau _t - \omega } \right\| = 0$$

for all normal states ω′.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bratteli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics, Vol. I. Berlin, Heidelberg, New York: Springer 1979

    Book  MATH  Google Scholar 

  2. Frigerio, A.: Stationary states of quantum dynamical semigroups. Commun. Math. Phys.63, 269–276 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Evans, D.E.: Irreducible quantum dynamical semigroups. Commun. Math. Phys.54, 293–297 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bratteli, O., Robinson, D.W.: Unbounded derivations of von Neumann algebras. Ann. Inst. H. Poincaré25 (A), 139–164 (1976)

    MathSciNet  MATH  Google Scholar 

  5. Majewski, A., Robinson, D.W.: Strictly positive and strongly positive semigroups. University of New South Wales Preprint (to be published in the Australian Journal of Mathematics)

  6. Radin, C.: Non-commutative mean ergodic theory. Commun. Math. Phys.21, 291–302 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Choi, M.-D.: A Schwarz inequality for positive linear maps onC*-algebras. Ill. J. Math.18, 565–574 (1974)

    MATH  Google Scholar 

  8. Choi, M.-D.: Inequalities for positive linear maps. J. Operat. Theory4, 271–285 (1980)

    MATH  Google Scholar 

  9. Davies, E.B.: Irreversible dynamics of infinite fermion systems. Commun. Math. Phys.55, 231–258 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by R. Jost

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, D.W. Strongly positive semigroups and faithful invariant states. Commun.Math. Phys. 85, 129–142 (1982). https://doi.org/10.1007/BF02029138

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02029138

Keywords

Navigation