Skip to main content
Log in

Time-ordered products and Schwinger functions

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

It is shown that every system of time-ordered products for a local field theory determines a related system of Schwinger functions possessing an extended form of Osterwalder-Schrader positivity and that the converse is true provided certain growth conditions are satisfied. This is applied to the φ 43 theory and it is shown that the time-ordered functions andS-matrix elements admit the standard perturbation series as asymptotic expansions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burnap, C.: The particle structure of Boson quantum field theories. Ph. D. Thesis, Harvard University (1976)

  2. Constantinescu, F.: Nontriviality of the scattering matrix for weakly coupled φ 43 models. Ann. Phys.108, 37–48 (1977)

    Google Scholar 

  3. Driessler, W., Fröhlich, J.: The reconstruction of local observable algebras from the Euclidean Green's functions of relativistic quantum field theory. Ann. Inst. Henri Poincaré27, 221–236 (1977)

    Google Scholar 

  4. Eckmann, J.-P., Epstein, H., Fröhlich, J.: Asymptotic perturbation expansion for theS-matrix and the definition of time-ordered functions in relativistic quantum field models. Ann. Inst. Henri Poincaré25, 1–34 (1976)

    Google Scholar 

  5. Epstein, H., Glaser, V.: Renormalization of non polynomial Lagrangians in Jaffe's class. Commun. math. Phys.27, 181–194 (1972)

    Google Scholar 

  6. Epstein, H., Glaser, V.: The role of locality in perturbation theory. Ann. Inst. Henri Poincaré19, 211–295 (1973)

    Google Scholar 

  7. Epstein, H., Glaser, V.: Adiabatic limit in perturbation theory. In: Renormalization theory. Velo, G., Wightman, A.S. (eds.), pp. 193–254. Dordrecht, Holland: D. Reidel 1976

    Google Scholar 

  8. Epstein, H., Glaser, V., Stora, R.: General properties of then-point functions in local quantum field theory. In: Proceedings of the June Institute of Theoretical Physics — Structural analysis of multiparticle collision amplitudes in relativistic quantum theory, pp. 5–93, Les Houches 1975. Amsterdam, Oxford, New York: North-Holland 1976

    Google Scholar 

  9. Feldman, J.: The λφ 43 theory in a finite volume. Commun. math. Phys.37, 93–120 (1974); Ph. D. Thesis, Harvard University, 1974

    Google Scholar 

  10. Feldman, J., Osterwalder, K.: The Wightman axioms and the mass gap for weakly coupled (φ4)3 quantum field theories. Ann. Phys.97, 80–135 (1976)

    Google Scholar 

  11. Feldman, J., Raczka, R.: The relativistic field equation of the λφ 43 quantum field theory. Ann. Phys.10, 212–229 (1977)

    Google Scholar 

  12. Fröhlich, J.: Schwinger functions and their generating functional, I. Helv. Phys. Acta47, 265–306 (1974)

    Google Scholar 

  13. Glaser, V.: On the equivalence of the Euclidean and Wightman formulation of field theory. Commun. math. Phys.37, 257–272 (1974)

    Google Scholar 

  14. Glimm, J.: Boson fields with the:φ4: interaction in three dimensions. Commun. math. Phys.10, 1–47 (1968)

    Google Scholar 

  15. Glimm, J., Jaffe, A.: Positivity of the φ 43 Hamiltonian. Fortschr. Physik21, 327–376 (1973)

    Google Scholar 

  16. Glimm, J., Jaffe, A.: Functional integral methods in quantum field theory. In: New developments in quantum field theory and statistical mechanics. Lévy, M., Mitter, P. (eds.) New York: Plenum Press 1977

    Google Scholar 

  17. Hegerfeldt, G.C.: From Euclidean to relativistic fields and on the notion of Markoff fields. Commun. math. Phys.35, 155–171 (1974)

    Google Scholar 

  18. Jaffe, A.: High-energy behaviour in quantum field theory, I. Strictly localizable fields. Phys. Rev.158, 1454–1461 (1967)

    Google Scholar 

  19. Magnen, J., Sénéor, R.: The infinite volume limit of the φ 43 model. Ann. Inst. Henri Poincaré24, 95–159 (1976)

    Google Scholar 

  20. Magnen, J., Sénéor, R.: Phase space cell expansion and Borel summability for the Euclidean φ 43 theory. Commun. math. Phys.56, 237–276 (1977)

    Google Scholar 

  21. Osterwalder, K.: Time ordered operator products and the scattering matrix inP(φ)2 models. Acta Phys. Austriaca (Suppl.)16, 69–86 (1976)

    Google Scholar 

  22. Osterwalder, K., Sénéor, R.: The scattering matrix is non-trivial for weakly coupledP(φ)2 models. Helv. Phys. Acta49, 525–535 (1976)

    Google Scholar 

  23. Osterwalder, K., Schrader, R.: Axioms for Euclidean Green's functions. Commun. math. Phys.33, 83–112 (1973)

    Google Scholar 

  24. Osterwalder, K., Schrader, R.: Axioms for Euclidean Green's functions, II. Commun. math. Phys.42, 281–305 (1975)

    Google Scholar 

  25. Symanzik, K.: Euclidean quantum field theory. In: Local quantum theory. Jost, R. (ed.). Proc. Corso XIV Varenna, New York 1969, Academic Press, and references cited therein

  26. Yngvason, J.: On the decomposition of Wightman Functionals in the Euclidean framework. Preprint

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Jaffe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckmann, J.P., Epstein, H. Time-ordered products and Schwinger functions. Commun.Math. Phys. 64, 95–130 (1979). https://doi.org/10.1007/BF01197509

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01197509

Keywords

Navigation