Skip to main content
Log in

Surface analysis of films and film systems produced by pulsed laser deposition

  • Poster Sessions
  • Structure Of Surfaces And Thin Films
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Ceramic films and film systems (ZrO2 films, ZrO2/Ti multilayers, and BN films) are deposited by pulsed laser deposition (PLD) and analyzed using X-ray photoelectron (XPS), Auger electron (AES), and micro-Raman spectroscopies. The electron spectroscopies are used to determine the film stoichiometry, the nature of the bonding, and to specify contaminant species. The micro-Raman spectroscopy gives information on crystal structure, grain size, and mechanical stress within the films. In ZrO2 films a stoichiometry is achieved with typically 5%, with only weak dependencies on processing variables. The only contaminants are a small amount of water from the ambient gas and a carbonaceous surface layer. Multilayers consisting of alternating ZrO2 and Ti layers exhibit a TiC contamination within the Ti layers. Depending on the processing variables, BN films may be nearly stoichiometric or may have significant, even dominant contaminations throughout the film from elemental B, B2O3, and/or a boron-oxynitride species. The first component is due to the non-stoichiometric material removal from the target (N-depletion) at low laser fluences, as confirmed by XPS measurements on irradiated targets. The second and third arise from H2O in the ambient, and exhibit a complex dependence on processing variables. Micro-Raman spectra show only amorphous or hexagonalphase BN. Depending on the position on the substrate relative to the laser-induced vapour/plasma plume, there may be a particle deposition or mechanical stress within the films, as evidenced from large shifts (up to 15 cm−1) of the Raman spectral peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saenger KL (1993) Process Adv Mater 2:1–24

    Google Scholar 

  2. See, e.g., Lowndes DH, Norton DP, Zhu S, Zheng X-Y (1992) In: Fogarassy E, Lazare S (eds) Laser ablation of electronic materials: basic Mechanisms and Applications. European Materials Research Society Monographs, Vol 4. North Holland Elsevier, Amsterdam

    Google Scholar 

  3. Alunovic M, Kreutz EW, Voss A, Aden M, Sung H (1994) Iron Steel Inst Japan Intern 34:507–515

    Google Scholar 

  4. Salmang H, Scholze H (1983) Keramische Werkstoffe, part 2, 6th edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  5. Wiemhöfer H-D, Harke S, Vohrer U (1990) Solid State Ionics 40/41:433–439

    Google Scholar 

  6. Sung H, Erkens G, Funken J, Voss A, Lemmer O, Kreutz EW (1992) Surf Coat Technol 54/55:541–547

    Google Scholar 

  7. Holleck H (1987) In: Fischmeister H, Jehn H (eds) Hartstoffschichten zur Verschleißminderung. Informationsgesellschaft, Oberursel, Germany

    Google Scholar 

  8. Wada T, Yamashita N (1992) J Vac Sci Technol A 10:515–520;

    Google Scholar 

  9. Burat O, Bouchier D, Stambouli V, Gautherin G (1990) J Appl Phys 68:2780–2790

    Google Scholar 

  10. See, e.g., Doll GL, Perry TA, Sell JA (1991) In: Atwater HA, Houle FA, Lowndes DH (eds) Surface chemistry and beamsolid interactions: materials research society symposium proceedings, Vol 201. Materials Research Society, Pittsburgh, Pennsylvania

    Google Scholar 

  11. Horwitz JS, Sprague JA (1994) In: Chrisey DB, Hubler GK (eds) Pulsed laser deposition of thin films. Wiley, New York

    Google Scholar 

  12. Funken J, Kreutz EW, Krösche M, Sung H, Voss A, Erkens G, Lemmer O, Leyendecker T (1992) Surf Coat Technol 52:221–227

    Google Scholar 

  13. Swift P (1982) Surf Interf Anal 4:47–51;

    Google Scholar 

  14. Swift P, Shuttle-worth D, Seah MP (1983) In: Briggs D, Seah MP (eds) Practical surface analysis by Auger and X-ray photoelectron spectroscopy. Wiley, London

    Google Scholar 

  15. Barr TL (1978) J Phys Chem 82:1801–1810

    Google Scholar 

  16. Wagner CD, Riggs WM, Davis LE, Moulder JF, Muilenberg GE (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden Prairie, Minnesota (and references therein)

    Google Scholar 

  17. Lide DR (1992/1993) Handbook of chemistry and physics. CRC Press, Boca Raton, Florida

    Google Scholar 

  18. See, e.g., Goodman DW, Kelley RD, Madey TE, Yates JT Jr (1980) J Catal 63:226–234

    Google Scholar 

  19. Wittmaak K (1992) In: Briggs D, Seah MP (eds) Practical surface analysis, Vol 2. Ion and neutral spectroscopy. Wiley, Chichester

    Google Scholar 

  20. See, e.g., Geohegan DB (1994) In: Chrisey DB, Hubler GK (eds) Pulsed laser deposition of thin films. Wiley, New York

    Google Scholar 

  21. Aleshin VG, Sokolov AN, Chudinov MG, Shul zhenko AA (1986) Sov Powder Metall Metal Ceram 12:1010–1014;

    Google Scholar 

  22. Hendrickson DN, Hollander JM, Jolly WL (1970) Inorg Chem 9:612–615

    Google Scholar 

  23. Pfleging W, Klotzbücher T, Wesner DA, Kreutz EW (1995) Diam Rel Mat 4:370–374

    Google Scholar 

  24. Nemanich RJ, Solin SA, Martin RM (1981) Phys Rev B 23:6348–6356

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wesner, D.A., Pfleging, W., Klotzbücher, T. et al. Surface analysis of films and film systems produced by pulsed laser deposition. Fresenius J Anal Chem 353, 729–733 (1995). https://doi.org/10.1007/BF00321359

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00321359

Keywords

Navigation