Skip to main content
Log in

Determination of trace amounts of copper with 4-(2-pyridylazo)resorcinol by solid phase spectrophotometry

  • Original Papers
  • Inorganic Chemistry
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

A determination method for traces of copper by Solid-Phase Spectrophotometry (SPS) has been developed. It is based on the fixation of copper(II) as 4-(2-pyridylazo)resorcinol complex on a styrene-divinylbenzene anion-exchange resin. The resin phase absorbances at 525 and 800 nm are measured directly, and the determination of copper (with a RSD of 1.8%) is possible in the range of 0.3–4.5 μg L−1. The method has been applied to the determination of copper in different samples, i.e. mushrooms, tea, drugs and waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Malvankar PL, Shinde VM (1991) Analyst 116:1081

    Google Scholar 

  2. Aitio A, Aro A, Järvisalo J, Vainio H (1991) Trace elements in health and disease, Royal Society of Chemistry, Cambridge

    Google Scholar 

  3. Snell FD (1978) Photometric and fluorometric methods of analysis, Part 1, Wiley-Interscience, New York

    Google Scholar 

  4. Yoshimura K, Waki H (1985) Talanta 32:345

    Google Scholar 

  5. American Public Health Association, American Water Works Association and Water Pollution Control Federation (1981) Standard methods for the examination of water and wastewater (A.P.H.A., Washington D.C., 15th ed.

    Google Scholar 

  6. Pinta M (1973) Méthodes de référence pour la determination des éléments minéraux dans les végétaux. Determination des éléments Ca, Mg, Fe, Mn, Zn et Cu par absorption atomique. C.I.I., 28, no 2, 87

    Google Scholar 

  7. Hniličková M, Sommer L (1961) Collection Czech. Chem. Commun 26:2189

    Google Scholar 

  8. Molina-Díaz A, Vida-Sagrista JJ, Pascual-Reguera MI, Capitán-Vallvey LF (1991) Int J Environ Anal 45:219

    Google Scholar 

  9. Pascual-Reguera MI, Molina-Díaz A, Ramos-Martos N, Capitán-Vallvey LF (1991) Anal Lett 24:2245

    Google Scholar 

  10. Fernández-de Córdova ML, Molina-Díaz A, Pascual-Reguera MI, Capitán-Vallvey (1992) Anal Lett 25:1961

    Google Scholar 

  11. Yoe JH, Jones AL (1944) Ind Eng Chem Anal Ed 16:111

    Google Scholar 

  12. Yoe JH, Harvey AE (1948) J Am Chem Soc 70:648

    Google Scholar 

  13. Job P (1927) Ann Chim 9:114

    Google Scholar 

  14. Muto Y (1958) Bull Chem Soc Jpn 31:1017

    Google Scholar 

  15. Lions F, Martin KV (1957) J Am Chem Soc 79:2733

    Google Scholar 

  16. Lions F, Goodwin HA (1959) J Am Chem Soc 81:6415

    Google Scholar 

  17. Cheng KL, Ueno K, Imamura T (1982) Handbook of organic analytical reagents, CRC Press, Boca Raton, pp 195–196

    Google Scholar 

  18. Iwamoto T (1961) Bull Chem Soc Jpn 34:605

    Google Scholar 

  19. Yotsuyanagi T, Hoshino H (1976) Bunseki 743

  20. Ringbom A (1938) Fresenius Z Anal Chem 115:332

    Google Scholar 

  21. Dragomirecky A, Mayer V, Michal J, Rericha K (1968) Photometrische Analyse anorganischer Roh- und Werkstoffe. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  22. Fotiev AA (1974) Analiticheskaya Khimiya neorganicheskii soedinenii, Akad. Nauk., Sverdlovsk, p 27

    Google Scholar 

  23. Cluley HJ (1954) Analyst 79:561

    Google Scholar 

  24. Peterson RE, Bollier ME (1955) Anal Chem 27:1195

    Google Scholar 

  25. Klemoneva OK, Nemodruk AA, Gibalo IM (1979) Zh Anal Khim 34:1485

    Google Scholar 

  26. Geiger RW, Sandell EB (1953) Anal Chim Acta 8:197

    Google Scholar 

  27. Geering HR, Hodgson JF (1966) Anal Chim Acta 36:537

    Google Scholar 

  28. Navalón A (1986) PhD Thesis, University of Granada

  29. Yoshimura K, Ohashi S (1978) Talanta 25:103

    Google Scholar 

  30. Wilson AL (1962) Analyst 87:884

    Google Scholar 

  31. Hunt DTE, Wilson AL (1986) The chemical analysis of water, The Royal Society of Chemistry, Oxford, p 398

    Google Scholar 

  32. Watson AE (1984) Nuclear Active, no. 30: 31

  33. Haraguchi H (1982) ICP Inf Newslett, 8:91

    Google Scholar 

  34. Manning DC, Heneage P (1967) At Absorpt Newslett 6:124

    Google Scholar 

  35. Parsons M, Major S (1983) Appl Spectrosc 37(5):411

    Google Scholar 

  36. Norton RL, Orpwood JR (1980) Multi-element analysis using an inductively-coupled plasma spectrometer, Part. 1, Commissioning and Preliminary Evaluation of Performance, Technical Report TR 141, Water Research Centre, Medmenham, Bucks

    Google Scholar 

  37. Winge RK, Fassel VA, Kniseley RN, DeKalb E, Haas WJ (1977) Spectrochim Acta Part. B, 32:327

    Google Scholar 

  38. Moore GL (1989) Analytical spectroscopy library, Vol. 3, “Introduction to inductively coupled plasma atomic emission spectrometry”, Elsevier

  39. Gillain G, Duyckaerts G, Disteche A (1979) Anal Chim Acta 106:23

    Google Scholar 

  40. IUPAC, Nomenclature, Symbols, Units and Their Usage in Spectrometrical Analysis (1976) Pure Appl Chem 105:45

    Google Scholar 

  41. Guidelines for Data Acquisition and Data Quality Evaluation in Environmental Chemistry (1980) Anal Chem 52:2242

    Google Scholar 

  42. Molina-Díaz A, Herrador-Mariscal JM, Pascual-Reguera MI (1993) Talanta 40:1059

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández-de Córdova, M.L., Molina-Díaz, A., Pascual-Reguera, M.I. et al. Determination of trace amounts of copper with 4-(2-pyridylazo)resorcinol by solid phase spectrophotometry. Fresenius J Anal Chem 349, 722–727 (1994). https://doi.org/10.1007/BF00325646

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00325646

Keywords

Navigation