Skip to main content
Log in

Photothermal spectroscopy and its analytical application

  • Lectures, Part III
  • Published:
Fresenius' Journal of Analytical Chemistry Aims and scope Submit manuscript

Summary

Photothermal spectroscopy relies on the detection of thermal or acoustic waves generated by the absorption of optical radiation and subsequent radiationless deexcitation. With this technique the absorbed energy is detected directly. Hence, weakly absorbing, opaque and scattering samples can be readily addressed with this spectroscopy. Various photothermal and photoacoustic detection schemes and the underlying physical principles are discussed. The potential and the limitations of this technique are highlighted with typical analytical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pao YH (1977) Optoacoustic spectroscopy and detection. Academic Press, New York

    Google Scholar 

  2. Rosencwaig A (1980) Photoacoustics and photoacoustic spectroscopy. Chemical analysis, vol 57. John Wiley, New York

    Google Scholar 

  3. Zharov VP, Letokhov VS (1986) Laser optoacoustic spectroscopy. Springer, Berlin Heidelberg New York

    Google Scholar 

  4. Mandelis A (ed) (1987) Photoacoustic and thermal wave phenomena in semiconductors. Elsevier, Amsterdam

    Google Scholar 

  5. Sell JA (ed) (1989) Photothermal investigations of solids and fluids. Academic Press, New York

    Google Scholar 

  6. Hess P (ed) (1989) Photoacoustic, photothermal and photochemical processes in gases. Topics in current physics, vol 46. Springer, Berlin Heidelberg New York

    Google Scholar 

  7. Hess P (ed) (1989) Photoacoustic, photothermal and photochemical processes at surfaces and in thin films. Topics in current physics, vol 47. Springer, Berlin Heidelberg New York

    Google Scholar 

  8. Patel CKN, Tam AC (1981) Rev Mod Phys 53:517

    Google Scholar 

  9. Kinney JB, Staley RH (1982) Ann Rev Mater Sci 12:295

    Google Scholar 

  10. West GA, Barrett JJ, Siebert DR, Reddy KV (1983) Rev Sci Instr 54:797

    Google Scholar 

  11. Tam AC (1986) Rev Mod Phys 58:381

    Google Scholar 

  12. Vargas H, Miranda LCM (1988) Phys Rep 161:43

    Google Scholar 

  13. IEEE (1986) Trans Ultrason, Ferroelectrics, Freq Contr UFFC-33(5)

  14. Pao YH (1987) Appl Phys B43

  15. Kinney JB, Staley RH (1986) Can J Phys 64

  16. Hess P, Pelzl J (eds) (1987) Photoacoustic and photothermal phenomena. Optical sciences, vol 58. Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Murphy J, Maclachlan Spicer JW, Aamodt LC, Royce BSH (eds) (1990) Photoacoustic and photothermal phenomena II. Optical Scienees, vol 62. Springer, Heidelberg New York

    Google Scholar 

  18. Carslaw HS, Jaeger JC (1960) Conduction of heat in solids. Clarendon, Oxford

    Google Scholar 

  19. Coufal H (1986) IEEE Trans Ultrason, Ferroelectrics, Freq Contr UFFC-33:507

  20. Coufal H, Grygier R (1989) J Opt Soc Am B6:2013

    Google Scholar 

  21. Nordal PE, Kanstadt SO (1979) Physica Scripta 20:659

    Google Scholar 

  22. Rosencwaig A, Opsal J, Smith WL, Willenborg DL (1985) Appl Phys Lett 46:1013

    Google Scholar 

  23. Bondarenko SV, Ivakin EV, Rubanov AS, Kabelka VI, Mikhailov AV (1987) Optics Comm 61:155

    Google Scholar 

  24. Eesley GL, Clemens BM, Paddock CA (1987) Appl Phys Lett 50:717

    Google Scholar 

  25. Fournier D, Boccara AC, Amer NM, Gerlach R (1980) Appl Phys Lett 37:519

    Google Scholar 

  26. Olmstead MA, Amer NM, Kohn SE, Fournier D, Boccara AC (1983) Appl Phys A32:141

    Google Scholar 

  27. Monchalin JP (1986) IEEE Trans Ultrason, Ferroelectrics, Freq Contr UFFC-33:485

  28. Tam AC, Patel CKN (1980) Opt Lett 5:27

    Google Scholar 

  29. Lee RE, White RM (1968) Appl Phys Lett 12:12

    Google Scholar 

  30. Tam AC, Patel CKN (1979) Appl Optics 18:3348

    Google Scholar 

  31. Coufal H (1984) J Photoacoustics 1:417

    Google Scholar 

  32. Mandelis A (1986) IEEE Trans Ultrason, Ferroelectrics, Freq Contr UFFC-33:590

  33. Sugitani Y, Uejima A, Kato K (1982) J Photoacoustics 1:217

    Google Scholar 

  34. Griffiths PR, de Haseth JA (1986) Fourier transform infrared spectrometry. John Wiley, New York

    Google Scholar 

  35. Coufal H (1982) Appl Opt 21:104

    Google Scholar 

  36. Bennett JM (1985) Thin Solid Films 123:27

    Google Scholar 

  37. Sigrist M (1987). Springer, Berlin Heidelberg New York, p 114

    Google Scholar 

  38. Bilmes GM, Tocho JO, Braslavsky SE (1987), p 48

    Google Scholar 

  39. Heihoff K, Braslavsky SE (1987), p 105

    Google Scholar 

  40. Braslavsky SE (1987), p 508

    Google Scholar 

  41. Nitsch C, Braslavsky SE, Schatz GH (1987). Springer, Berlin Heidelberg New York, p 527

    Google Scholar 

  42. Weinberger BR, Roxlo CB, Etemad S, Baker GL, Orenstein J (1984) Phys Rev Lett 53:86

    Google Scholar 

  43. Porter MD, Karweik DH, Kuwana T, Theis WB, Norris GB, Tiernan TO (1984) Appl Spectrosc 38:11

    Google Scholar 

  44. Knoll W, Coufal H (1987) Appl Phys Lett 51:892

    Google Scholar 

  45. Dohrmann JK, Sander U (1987) Ber Bunsenges Phys Chem 90:605

    Google Scholar 

  46. Helander P, Lundström I (1981) J Appl Phys 52:1146

    Google Scholar 

  47. Pelzl J, Grygier R, Coufal H (1986) In: Grazer F, Moisar E (eds) Progress in basic principles of imaging systems. Vieweg, Braunschweig, pp 216–218

    Google Scholar 

  48. Coufal H (1984) Appl Phys Lett 45:516

    Google Scholar 

  49. Schneider S, Coufal H (1982) J Chem Phys 76:2919

    Google Scholar 

  50. McClelland JF, MTEC Photoacoustics Inc, private communication

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coufal, H. Photothermal spectroscopy and its analytical application. Fresenius J Anal Chem 337, 835–842 (1990). https://doi.org/10.1007/BF00322261

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00322261

Keywords

Navigation