Skip to main content
Log in

Where is analysis of trace elements in biotic matrices going to?

über die zukünftige Entwicklung der Spurenelementanalyse in biotischen Matrices

  • Original Papers
  • Published:
Fresenius' Zeitschrift für analytische Chemie Aims and scope Submit manuscript

Summary

Accomplishing the act of balancing our technological progress with the accompanying risks for safety and health in our life quality, calls for modern analytical science. It should serve as an indicator for the correct balance of forces in the substantial sphere. However, today such an indicating role is based on rough estimations, or on insufficient or unconfirmed information with respect to concentrations, binding forms and local distributions of toxic or of essential substances within a sample. Moreover, many complex mechanisms of synergetic and antagonistic physiological interactions have not yet been clarified — and consequently, we have to take into account severe misjudgements of risks.

In addition, one has reached the limits of financial means required for the increasing control and survey tasks of daily analytical routine. Accordingly, only a long-term planned strategy for the development of more powerful, more reliable and more economic analytical methods, which moreover guarantee a better local distribution (microdistribution analysis), are the prerequisites for an improvement of this situation in analytical sciences.

In view of the future tasks and the ultimate limits of trace- and micro-distribution analysis of the elements, the present state and an outlook on reaching the limit of analysis are critically discussed. Main emphasis is placed here on the possibility of improving conventional determination methods such as AAS, OES, XRFA, MS, NAA with regard to better power of detection and reliability. But also innovative analytical principles such as laser atomic spectroscopy (RIS, LEI, LIF) are introducted. They promise to develop into an essential basis for micro and trace element analysis of tomorrow.

As instrumental methods are always the last step in an analytical procedure, a brief reference will be made to the problem of sample preparation, mainly with regard to the sources of systematic errors. As for trace analysis at the ng/ ml- or pg/ml-levels there are no reliable or certified standard reference materials available up to now, multistep procedures are still necessary. They must combine decomposition, preconcentration and determination methods in an optimal way to minimize systematic errors. The state-of-the-art of such multistep procedures in extreme elemental trace analysis will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tölg G, Garten R (1985) Angew Chem (Int Ed Engl) 24:485

    Google Scholar 

  2. Tölg G (1988) Fresenius Z Anal Chem 329:735

    Google Scholar 

  3. Tölg G (1975) In: Svehla G (ed) Wilson's and Wilson's comprehensive analytical chemistry, vol III. Elsevier Scientific, Amsterdam, pp 1–184

    Google Scholar 

  4. Tölg G (1976) Naturwissenschaften 63:99

    Google Scholar 

  5. Tölg G (1977) Fresenius Z Anal Chem 283:257

    Google Scholar 

  6. Tschöpel P, Tölg G (1982) J Trace Microprobe Technol 1:1

    Google Scholar 

  7. Tölg G, Tschöpel P (1987) Anal Sci 3:199

    Google Scholar 

  8. Tölg G (1987) Analyst 112:365

    Google Scholar 

  9. Broekaert JAC, Tölg G (1987) Fresenius Z Anal Chem 326:495

    Google Scholar 

  10. Berndt H, Jackwerth E (1975) Spectrochim Acta 30B:169

    Google Scholar 

  11. Berndt H, Messerschmidt J (1979) Spectrochim Acta 34B:241

    Google Scholar 

  12. Berndt H, Messerschmidt J (1982) Anal Chim Acta 136:407

    Google Scholar 

  13. Berndt H (1988) Fresenius Z Anal Chem 331:321–323

    Google Scholar 

  14. Berndt H (1984) Spectrochim Acta 39B:1121

    Google Scholar 

  15. Dittrich K (1988) In: Fresenius W et al. (eds) Analytiker Taschenbuch, Bd 8. Springer, Berlin Heidelberg New York London Tokyo, in press

    Google Scholar 

  16. Welz B (1985) Atomic absorption spectrometry, 2nd engl edn. VCH Verlagsgesellschaft, Weinheim

    Google Scholar 

  17. Frech WE, Lundberg E, Cedergren A (1985) Progr Anal At Spectrosc 8:257

    Google Scholar 

  18. Berndt H, Schaldach G, KlockenkÄmper R (1987) Anal Chim Acta 200:573

    Google Scholar 

  19. Baasner J, Berndt H, Eiermann R (1986) In: Welz B (ed) Fortschritte in der atomspektrometrischen Spurenanalytik, Bd 2. VCH Verlagsgesellschaft, Weinheim, pp 387–395

    Google Scholar 

  20. Berndt H, Sopczak D (1987) Fresenius Z Anal Chem 329:18

    Google Scholar 

  21. Langmyhr FJ, Wibertoe G (1985) Progr Anal At Spectrosc 8:193

    Google Scholar 

  22. 2nd International Colloquium: Solid Sampling with Atomic Spectroscopic Methods, Wetzlar (1987) Fresenius Z Anal Chem 328:315

  23. Stoeppler M, Kurfürst U, Grobecker KH (1985) Fresenius Z Anal Chem 322:687

    Google Scholar 

  24. Piwonka J, Kaiser G, Tölg G (1985) Fresenius Z Anal Chem 321:225

    Google Scholar 

  25. Fassel VA (1971) In: XVI Coll Spectrosc Intern, Heidelberg, Plenary Lectures and Reports, Hilger A, London, pp 63–93

    Google Scholar 

  26. Broekaert JAC (1987) Anal Chim Acta 196:1

    Google Scholar 

  27. Matousek JP, Orr BJ, Selby M (1984) Progr Anal At Spectrosc 7:275

    Google Scholar 

  28. Kollotzek D, Tschöpel P, Tölg G (1984) Spectrochim Acta 39B:625

    Google Scholar 

  29. Haas DL, Caruso JA (1984) Anal Chem 56:2014

    Google Scholar 

  30. Risby TH, Talmi Y (1983) Crit Rev Anal Chem 14:231

    Google Scholar 

  31. Deruaz D, Mermet JM (1986) Analusis 14:107

    Google Scholar 

  32. Cammann K, Lendero L, Feuerbacher H, Ballschmiter K (1983) Fresenius Z Anal Chem 316:194

    Google Scholar 

  33. Kollotzek D, Oechsle D, Kaiser G, Tschöpel P, Tölg G (1984) Fresenius Z Anal Chem 318:485

    Google Scholar 

  34. Kaiser G, Götz D, Tölg G, Knapp G, Maichin B, Spitzy H (1978) Fresenius Z Anal Chem 291:278

    Google Scholar 

  35. Noijiri Y, Otsuki A, Fuwa K (1986) Anal Chem 58:544

    Google Scholar 

  36. Volland G, Tschöpel P, Tölg G (1981) Spectrochim Acta 312:901

    Google Scholar 

  37. Aziz A, Broekaert JAC, Leis F (1982) Spectrochim Acta 37B:381

    Google Scholar 

  38. Falk H, Hoffmann E, Lüdke Ch (1981) Spectrochim Acta 36B:767

    Google Scholar 

  39. Falk H (1988) Crit Rev Anal Chem 19:29

    Google Scholar 

  40. Moenke-Blankenburg L (1986) Progr Anal At Spectrosc 9:335

    Google Scholar 

  41. Omenetto N, Winefordner JD (1979) Progr Anal At Spectrosc 2:1

    Google Scholar 

  42. Travis JC, Turk GC, Schenk JR, van Dijk CA (1984) Progr Anal At Spectrosc 7:199

    Google Scholar 

  43. Letokhov VS (1987) Laser photoionization spectroscopy. Academic Press, Orlando, p 215

    Google Scholar 

  44. Hurst GS, Payne MG (1988) Spectrochim Acta B, in press

  45. Fassett JDD, Travis JC (1988) Spectrochim Acta B, in press

  46. Niemax K (1987) Naturwissenschaften 74:474

    Google Scholar 

  47. Niemax K (1985) Appl Phys B 38:147

    Google Scholar 

  48. Hergenröder R, Niemax K, Spectrochim Acta B, submitted

  49. Van Grieken R, Markowicz A, Torök Sz (1986) Fresenius Z Anal Chem 324:825

    Google Scholar 

  50. KlockenkÄmper R (1982) In: Ullmans EncyklopÄdie der technischen Chemie, Bd 5. Verlag Chemie, Weinheim, pp 501–518

    Google Scholar 

  51. William KL (1987) An introduction to X-ray spectrometry. Allen & Unwin, Boston

    Google Scholar 

  52. KlockenkÄmper R (1987) Spectrochim Acta 42B:423

    Google Scholar 

  53. Yoneda Y, Horiuchi T (1971) Rev Sci Instrum 42:1069

    Google Scholar 

  54. Wobrauschek P, Aiginger H (1975) Anal Chem 47:852

    Google Scholar 

  55. Schwenke H, Knoth J (1983) Nucl Instrum Methods 193:239

    Google Scholar 

  56. Michaelis W, Knoth J, Prange A, Schwenke H (1985) Adv X-Ray Anal 28:75

    Google Scholar 

  57. Prange A (1987) GIT Fachz Lab 6:513

    Google Scholar 

  58. Von Bohlen A, KlockenkÄmper R, Otto H, Tölg G, Wiecken B (1987) Int Arch Occup Environ Health 59:403

    Google Scholar 

  59. Von Bohlen A, KlockenkÄmper R, Tölg G, Wiecken B (1988) Fresenius Z Anal Chem, in press

  60. Ruch C, Rastegar F, Heimburger R, Maier EA, Leroy MJF (1985) Anal Chem 57:1691

    Google Scholar 

  61. Garten RPH (1984) In: Fresenius W et al. (eds) Analytiker Taschenbuch, Bd 4. Springer, Berlin Heidelberg New York, pp 259–286

    Google Scholar 

  62. Li HK, Malmqvist KG, Carlson LE, Akselsson KR (1984) Nucl Instrum Methods B3:347

    Google Scholar 

  63. Li HK, Malmqvist KG (1985) Nucl Instrum Methods B12:257

    Google Scholar 

  64. Gilfrich JV, Sketton ET, Quadri SB, Kirkland JP, Nagel DJ (1983) Anal Chem 55:187

    Google Scholar 

  65. Iida A, Goshi Y (1984) Adv X-Ray Anal 28:61

    Google Scholar 

  66. Ketelsen P, Knöchel A, Petersen W (1986) Fresenius Z Anal Chem 323:807

    Google Scholar 

  67. Iida A, Yoshinaga A, Sakurai K, Goshi Y (1986) Anal Chem 58:394

    Google Scholar 

  68. Heumann KG (1982) Int J Mass Spectrom Ion Phys 45:87

    Google Scholar 

  69. Heumann KG, Beer F, Weiss H (1983) Mikrochim Acta 1983:95

    Google Scholar 

  70. Gray AL, Date AR (1983) Analyst 108:1033

    Google Scholar 

  71. Houk RS (1986) Anal Chem 58:97A

    Google Scholar 

  72. Jakubowski N, Stuewer D, Tölg G, to be published

  73. Donohue DL, Young JP, Smith DH (1982) Int J Mass Spectrom Ion Phys 43:293

    Google Scholar 

  74. Tschöpel P (1982) Pure Appl Chem 54:913

    Google Scholar 

  75. Tschöpel P (1980) In: Ullmanns EncyklopÄdie der technischen Chemie, Bd 5. Verlag Chemie, Weinheim, p 27

    Google Scholar 

  76. Knapp G (1984) Fresenius Z Anal Chem 317:213

    Google Scholar 

  77. Schramel P, Hasse S, Knapp G (1987) Fresenius Z Anal Chem 326:142

    Google Scholar 

  78. Knapp G (1985) Int J Environ Anal Chem 22:71

    Google Scholar 

  79. Tölg G (1983) Pure Appl Chem 55:1989

    Google Scholar 

  80. Mizuike A (1983) Enrichment techniques for inorganic trace analysis. Springer, Berlin Heidelberg New York

    Google Scholar 

  81. Mizuike A (1986) Fresenius Z Anal Chem 324:672

    Google Scholar 

  82. BÄchmann K (1981) Crit Rev Anal Chem 12:1

    Google Scholar 

  83. Zolotov YuA, Bodnya VA, Zagruzina AN (1982/83) Crit Rev Anal Chem 14:93

    Google Scholar 

  84. Van Grieken R (1982) Anal Chim Acta 143:3

    Google Scholar 

  85. Cassidy RM (1981) In: Lawrence JF (ed) Trace analysis, vol 1. Academic Press, New York, pp 121–192

    Google Scholar 

  86. Möller J (1988) In: Fresenius W et al. (eds) Analytiker Taschenbuch, Bd 7. Springer, Berlin Heidelberg New York London Paris Tokyo, pp 198–275

    Google Scholar 

  87. Tyson JF (1985) Analyst 110:419

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Prof. Dr. W. Fresenius in gratitude on the occasion of his 75th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tölg, G. Where is analysis of trace elements in biotic matrices going to?. Z. Anal. Chem. 331, 226–235 (1988). https://doi.org/10.1007/BF00481889

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00481889

Keywords

Navigation