Skip to main content
Log in

Molecule formation in electrothermal atomizers: Interferences and analytical possibilities by absorption, emission and fluorescence processes

Molekülbildung in elektrothermischen Atomisatoren: Störungen und analytische Möglichkeiten durch Absorptions-, Emissions- und Fluorescenzprozesse

  • Lectures
  • Published:
Fresenius' Zeitschrift für analytische Chemie Aims and scope Submit manuscript

Zusammenfassung

Es wird die Bildung von stabilen, vorwiegend 2-atomigen Molekülen in Graphitrohrküvetten beschrieben. Es wird festgestellt, daß auch die modernen isothermen Verdampfungstechniken bei Molekülen mit Dissoziationsenergien > 3–4 eV nicht zur vollständigen Dissoziation führen. Systematische Fehler von AA-Resultaten sind die Folge.

Systematische Untersuchungen zur Anwendung 2-atomiger Moleküle vom MX-Typ (z. B. AlF) für die Spurenanalyse von Nichtmetallen (X) werden beschrieben. Umfangreiche Ergebnisse werden zur Molekülabsorption mit elektrothermischer Verdampfung (MAS-ETV) angeführt. Spurenbestimmungen im Nanogramm-Bereich (Mikroliter-Proben) sind möglich für F, Cl, Br, S und I bzw. deren Anionen.

Prinzipien der Überanregung werden zur Verbesserung der Nachweisgrenzen von Nichtmetallen auf 2-atomige Moleküle angewendet. Die Anwendung der nichtthermischen FANES-Anregung führt zur Entwicklung der neuen Methode MONES-ETV (Molekül-nichtthermische Emissionsspektroskopie mit elektrothermischer Verdampfung) mit Nachweisgrenzen unterhalb des Nanogramm-Bereichs für F, Cl und Br durch InX-Moleküle. Die Anwendung des Prinzips der laserangeregten Atomfluorescenz führt zur neuen Methode LAMOFS-ETV (laserangeregte Molekülfluorescenzspektrometrie mit elektrothermischer Verdampfung) mit den bisher besten Nachweisgrenzen von einigen Picogramm für F, Cl, Br durch Anwendung der AlBr, InCl und MgF-Moleküle.

Summary

The formation of stable diatomic molecules in graphite tube furnaces is described. It is also shown that the new isothermal evaporation techniques in AAS do not lead to complete dissociation of molecules with dissociation energies > 3–4 eV. Systematic errors of AA results follow.

Systematic studies of the application of diatomic molecules (MX-type) for trace analysis of non-metals (X) were carried out. Many results are given for molecular absorption with electrothermal evaporation (MAS-ETE). Trace determinations in ng level (μl samples) for F, Cl, Br, S and I and their anions are possible. Examples for real analysis are given.

Principles of “over-excitation” for improvement of detection limits of non-metals are applied to diatomic molecules.

The application of the non-thermal FANES excitation leads to the development of the new method MONES-ETE (molecular non-thermal emission spectrometry with electrothermal evaporation) with detection limits below 1 ng for F, Cl, Br using InX molecules.

The application of the principle of laser excited fluorescence leads to the new method LAMOFS-ETE (laser excited molecular fluorescence with electrothermal evaporation) with the upto now best detection limits for F, Cl, Br at pg level using AlBr, InCl, MgF molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L'vov BV (1961) Spectrochim Acta 17:761

    Google Scholar 

  2. Massmann H (1968) Spectrochim Acta 23B:215

    Google Scholar 

  3. L'vov BV (1969) Spectrochim Acta 24B:53

    Google Scholar 

  4. Takeuchi T, Yanagisawa M, Suzuki M (1972) Talanta 19:465

    Google Scholar 

  5. Welz B (1973) Proc. 17th Coll Spectrosc Int Firenze 67

  6. Dittrich K (1980) Prog Anal At Spectrosc 3:209

    Google Scholar 

  7. Dittrich K (1985) CRC Crit Rev Anal Chem, in press

  8. Dittrich K (1977) Talanta 24:725

    Google Scholar 

  9. Dittrich K (1977) Talanta 24:735

    Google Scholar 

  10. Dittrich K, Mothes W, Weber P (1977) Proc 3rd Symp Electrotherm Atomization in AAS, Chlum u Trebone at 20th Coll Spectrosc Int Prague, p 134

  11. Ottaway JM, Hutton RC, Platt T, Smith WE, Campbell WC, see [10], p 125

  12. L'vov BV (198) Spectrochim Acta 33B:153

  13. Dittrich K, Mandry R, Mothes W, Yudelevich IG (1985) Analyst 110:169

    Google Scholar 

  14. Manning DC, Slavin W, Perkin-Elmer, Anal Study 98:9

  15. Frech W, Jonsson S (1982) Spectrochim Acta 37B:1021

    Google Scholar 

  16. Tsunoda K, Fujiwara K, Fuwa K (1977) Anal Chem 49:2035

    Google Scholar 

  17. Tsunoda K, Fujiwara K, Fuwa K (1978) Anal Chem 50:861

    Google Scholar 

  18. Tsunoda K, Chiba K, Haraguchi H, Fuwa K (1979) Anal Chem 51:2059

    Google Scholar 

  19. Chiba K, Tsunoda K, Haraguchi H, Fuwa K (1980) Anal Chem 52:1582

    Google Scholar 

  20. Tsunoda K, Chiba K, Haraguchi H, Chakrabarti CL, Fuwa K (1982) Can J Spectrosc 27:94

    Google Scholar 

  21. Takatsu A, Chiba K, Ozaki M, Fuwa K, Haraguchi H (1984) Spectrochim Acta 39B: 315

    Google Scholar 

  22. Tsunoda K, Haraguchi H, Fuwa K (1980) Spectrochim Acta 35B:715

    Google Scholar 

  23. Dittrich K (1979) Wiss Z Karl-Marx-Univ Leipzig, Math-Naturwiss R 28:365

    Google Scholar 

  24. Dittrich K (1979) Anal Chim Acta 111:123

    Google Scholar 

  25. Dittrich K, Vorberg B, Funk J, Beyer V (1984) Spectrochim Acta 398:349

    Google Scholar 

  26. Dittrich K, Vorberg B (1983) Chem Anal (Warsaw) 28:539

    Google Scholar 

  27. Dittrich K, Shkinev VM, Spivakov BY (1985) Talanta, in press

  28. Dittrich K (1978) Anal Chim Acta 97:59

    Google Scholar 

  29. Dittrich K (1978) Anal Chim Acta 97:69

    Google Scholar 

  30. Dittrich K, Vorberg B (1982) Anal Chim Acta 140:237

    Google Scholar 

  31. Dittrich K, Meister P (1980) Anal Chim Acta 121:205

    Google Scholar 

  32. Dittrich K, Spivakov BY, Shkinev VM, Vorobeva GA (1984) Talanta 31:39

    Google Scholar 

  33. Dittrich K, Schneider S (1980) Anal Chim Acta 115:189

    Google Scholar 

  34. Dittrich K, Schneider S (198) Anal Chim Acta 115:201

    Google Scholar 

  35. Dittrich K, Vorberg B (1983) Anal Chim Acta 152:149

    Google Scholar 

  36. Dittrich K, Spivakov BY, Shkinev VM, Vorobeva GA (1985) Talanta 31:341

    Google Scholar 

  37. Dittrich K, Beyer V, Havezov I (1984) Anal Chim Acta 160:323

    Google Scholar 

  38. Dittrich K, Funk J, Werner G (1984) Anal Chim Acta 160:227

    Google Scholar 

  39. Miller WA (1845) Phil Mag 27:81

    Google Scholar 

  40. Salet G (1869) CR Acad Sci Fr 68:404

    Google Scholar 

  41. Salet G (1869) Bull Soc Chim Fr 11:302

    Google Scholar 

  42. Belcher R, Bogdanski SL, Townshend A (1973) Anal Chim Acta 67:1

    Google Scholar 

  43. Hutton RC, Ottaway JM, Epstein MS, Rains TC (1977) Analyst 102:658

    Google Scholar 

  44. Ottaway JM, Hutton RC (1977) Analyst 102:785

    Google Scholar 

  45. Gutsche B, Rüdiger K, Hermann R (1977) Fresenius Z Anal Chem 285:103

    Google Scholar 

  46. Gutsche B, Rüdiger K (1978) Chromatographia 11:367

    Google Scholar 

  47. Belcher R, Bogdanski SL, Kassir LM, Stiles DA, Townshend A (1974) Anal Lett 7:751

    Google Scholar 

  48. Abdel-Kader MHK, Peach ME, Ragab MHT, Stiles DA (1979) Anal Lett 12:1399

    Google Scholar 

  49. Abdel-Kader MHK, Peach ME, Stiles DA (1979) J Assoc Off Anal Chem 62:114

    Google Scholar 

  50. Osibanjo O, Aiyai SO (1980) Anal Chim Acta 120:371

    Google Scholar 

  51. Falk H, Hoffmann E, Lüdke Ch (1981) Fresenius Z Anal Chem 307:362

    Google Scholar 

  52. Falk H, Hoffmann E, Lüdke Ch (1981) Spectrochim Acta 36B:767

    Google Scholar 

  53. Barrow RF, Glaser DV, Zeeman PB (1955) Proc Phys Soc A67:962

    Google Scholar 

  54. Barrow RF, Jaquest JAT, Thomson EW (1984) Proc Phys Soc A66:528

    Google Scholar 

  55. Joffe RB, Korovin JI (1978) Zh Prikl Spektrosk 29:197

    Google Scholar 

  56. Dittrich K, Hanisch B, Stärk HJ (1985) Proc Second Hung-Ital Symp on Spectrochem Budapest 10–14 June, in press

  57. Bolshov MA, Zybin AV, Smirenkina (1981) Spectrochim Acta 36B:1143

    Google Scholar 

  58. Crosley DR (ed) (1980) Laser probes for combustion chemistry, ACS Symp. Ser No 134 Am Chem Soc Washington

    Google Scholar 

  59. Fowler WC, Winefordner GD (1977) Anal Chem 49:944

    Google Scholar 

  60. Capelle GA, Broida HP (1972) J Chem Phys 56:149

    Google Scholar 

  61. Green RB, Hanko L, Davis SJ (1979) Chem Phys Lett 64:461

    Google Scholar 

  62. Bonczyk P, Shirley JA (1979) Combust Flame 34:253

    Google Scholar 

  63. Donnelly VM, Krlicek RF (1982) J Appl Phys 53:6395

    Google Scholar 

  64. Dittrich K, Stärk HJ (1986) J Anal At Spectrosc, in press

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dittrich, K., Hanisch, B. & Stärk, H.J. Molecule formation in electrothermal atomizers: Interferences and analytical possibilities by absorption, emission and fluorescence processes. Z. Anal. Chem. 324, 497–506 (1986). https://doi.org/10.1007/BF00470404

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00470404

Keywords

Navigation