Skip to main content
Log in

LCAO-MO-SCF-CI semi-empirical π-electron calculations on heteroaromatic systems

I. Hydroxy aromatic compounds

  • Commentationes
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The electronic spectra and structure for phenol, the three dihydroxybenzene isomers, and α- and β-naphthol have been calculated using a modification of the Pariser-Parr-Pople method. Core integrals are defined to be essentially independent of geometry and orthogonalized atomic orbitals are used. The electronic transitions considered involve singlet-singlet and triplet-triplet ππ * excitations. A limited configuration interaction has been included, involving either single electron excitations or both single and double electron excitations between the two highest occupied and the two lowest unoccupied molecular orbitals. Agreement between calculated and experimental values is good, and calculated values for oscillator strengths are considerably improved when double electron excitations are admitted.

Zusammenfassung

Die Elektronenspektren und Struktur von Phenol, den drei Isomeren des Dihydroxybenzols und α- und β-Naphthol wurden mit einer Modifikation der PPP-Methode berechnet. Die Rumpfintegrale werden so definiert, daß sie im wesentlichen unabhängig von der Geometrie sind; es werden orthogonalisierte Atomorbitale benutzt. Die betrachteten Elektronenübergänge enthalten Singulett-Singulett- und Triplett-Triplett-ππ *-Übergänge. Es wurde eine begrenzte Konfigurationswechselwirkung eingeschlossen, die nur Einelektronen- oder Ein- und Zweielektronenanregung zwischen den beiden höchsten besetzten und den beiden niedrigsten unbesetzten MO's enthält. Es besteht gute Übereinstimmung von berechneten und experimentellen Daten. Die berechneten Werte für Oszillatorenstärken werden erheblich verbessert, wenn man Zweielektronenanregung einbezieht.

Résumé

Les spectres électroniques et les structures du phénol, des trois dihydroxybenzènes isomères, de l'α et du β naphtol ont été calculé pour une variante de la méthode de Pariser-Parr-Pople. Les intégrales de coeur sont définies de manière à être indépendantes de la géométrie et des orbitales atomiques orthogonalisées sont employées. On considère les transitions électroniques ππ * singulet-singulet et triplet-triplet. Une interaction de configuration limitée a été effectuée en considérant soit des minoexcitations soit des mono et des diexcitations de la plus haute orbitale occupée aux deux orbitales libres les plus basses. L'accord entre les valeurs calculées et les valeurs expérimentales est bon, et les valeurs calculées des forces oscillatrices sont considérablement améliorées lorsque l'on tient compte des états diexcités.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R., and J. C. Anderson: J. Amer. chem. Soc. 72, 5154 (1950).

    Article  CAS  Google Scholar 

  2. Adams, O. W., and R. Miller: J. Amer. chem. Soc. 88, 404 (1966).

    Article  CAS  Google Scholar 

  3. Baba, H.: Bull. chem. Soc. Japan 34, 76 (1961).

    Article  CAS  Google Scholar 

  4. —, and S. Suzuki: Bull. chem. Soc. Japan 34, 82 (1961).

    Article  CAS  Google Scholar 

  5. Bloor, J. E., u. F. Peradejordi: Theoret. chim. Acta 1, 83 (1962).

    Article  CAS  Google Scholar 

  6. Daudel, R., R. Lefebvre, and C. Moser: Quantum chemistry, methods and applications. New York: Interscience Publishers, Inc. 1959.

    Google Scholar 

  7. Dearden, J. C., and W. F. Forbes: Canad. J. Chem. 37, 1294 (1959).

    Article  CAS  Google Scholar 

  8. Dewar, M. J. S., and H. N. Schmeising: Tetrahedron 11, 96 (1960).

    Article  CAS  Google Scholar 

  9. Doub, L., and J. M. Vandenbelt: J. Amer. chem. Soc. 69, 2714 (1947).

    Article  CAS  Google Scholar 

  10. Faddeev, D. K., and V. N. Faddeeva: Computational methods of linear algebra. San Francisco: Freeman & Co. 1963.

    Google Scholar 

  11. Forster, L. S., and K. Nishimoto: J. Amer. chem. Soc. 7, 1459 (1965).

    Article  Google Scholar 

  12. Hinze, J., and H. H. Jaffée: J. Amer. chem. Soc. 84, 540 (1962).

    Article  CAS  Google Scholar 

  13. Kiss, A., J. Molnar et C. Sandorfy: Bull. Soc. Chim. France 5, 275 (1949).

    Google Scholar 

  14. Knowlton, P., and W. R. Carper: Molecular Physics 11, 213 (1966).

    Article  CAS  Google Scholar 

  15. Koopmans, T.: Physica 1, 100 (1933).

    Google Scholar 

  16. Löwdin, P. O.: J. chem. Physics 18, 365 (1950).

    Article  Google Scholar 

  17. Mataga, N., u. K. Nishimoto: Z. physik. Chem. (Frankfurt) 13, 140 (1957).

    Article  CAS  Google Scholar 

  18. Moore, C. E.: Atomic energy levels, Vol. 1. Washington: National Bureau of Standards 1949.

    Google Scholar 

  19. Mulliken, R. S., and C. A. Rieke: Rep. Prog. Physics 8, 231 (1941).

    Article  CAS  Google Scholar 

  20. — —, D. Orloff, and H. Orloff: J. chem. Physics 17, 1248 (1949).

    Article  CAS  Google Scholar 

  21. —: J. Chim. physique 46, 497 (1949).

    CAS  Google Scholar 

  22. Musgrave, O. C.: J. chem. Soc. 1956, 4301.

  23. Nishimoto, K., and R. Fujishiro: Bull. chem. Soc. Japan 31, 1036 (1958).

    Article  CAS  Google Scholar 

  24. — —: Bull. chem. Soc. Japan 32, 699 (1959).

    Article  CAS  Google Scholar 

  25. — —: Bull. chem. Soc. Japan 35, 905 (1962).

    Article  CAS  Google Scholar 

  26. —: J. physic. Chem. 67, 1443 (1963).

    Article  Google Scholar 

  27. — and R. Fujishiro: Bull. chem. Soc. Japan 37, 1660 (1964).

    Article  CAS  Google Scholar 

  28. — and L. S. Forster: Theoret. chim. Acta 4, 155 (1966).

    Article  CAS  Google Scholar 

  29. O'Gorman, J. M., W. Shand, Jr., and V. Schomaker: J. Amer. chem. Soc. 72, 4222 (1950).

    Article  Google Scholar 

  30. Pariser, R., and R. G. Parr: J. chem. Physics 21, 466 (1953).

    Article  CAS  Google Scholar 

  31. —: J. chem. Physics 21, 568 (1953).

    Article  CAS  Google Scholar 

  32. —, and R. G. Parr: J. chem. Physics 21, 767 (1953).

    Article  CAS  Google Scholar 

  33. —: J. chem. Physics 24, 250 (1956).

    Article  CAS  Google Scholar 

  34. Parr, R. G., and R. Pariser: J. chem. Physics 23, 711 (1955).

    Article  CAS  Google Scholar 

  35. —: Quantum theory of molecular electronic structure. New York: W. A. Benjamin, Inc. 1964.

    Google Scholar 

  36. Peacock, T. E.: J. chem. Soc. 1959, 3241.

  37. —, and P. T. Wilkinson: Proc. Physic. Soc. 83, 525 (1964).

    Article  CAS  Google Scholar 

  38. —: Electronic properties of aromatic and heterocyclic molecules. New York: Academic Press 1965.

    Google Scholar 

  39. Petruska, J.: J. chem. Physics 34, 1120 (1961).

    Article  CAS  Google Scholar 

  40. Pople, J. A.: Trans. Faraday Soc. 49, 1375 (1953).

    Article  CAS  Google Scholar 

  41. —: J. physic. Chem. 61, 6 (1957).

    Article  CAS  Google Scholar 

  42. Slater, J. C.: Physic. Rev. 36, 57 (1930).

    Article  CAS  Google Scholar 

  43. Watanabe, K., T. Nakayama, and J. Mottl: J. Quant. Spectr. Radiat. Transfer 2, 369 (1959).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This investigation was supported by a National Science Foundation grant, No. GB-4065. Abstracted in part from the Ph. D. thesis of G. W. Pukanic, Duquesne University, 1967.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pukanic, G.W., Forshey, D.R., Wegener, B.J.D. et al. LCAO-MO-SCF-CI semi-empirical π-electron calculations on heteroaromatic systems. Theoret. Chim. Acta 9, 38–50 (1967). https://doi.org/10.1007/BF00526107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00526107

Keywords

Navigation