Skip to main content
Log in

Method of moments approach and coupled cluster theory

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

The single reference coupled cluster (CC) approach to the many-electron correlation problem is examined from the viewpoint of the method of moments (MM). This yields generally an inconsistent (overcomplete) set of equations for cluster amplitudes, which can be solved either in the least squares sense or by selective projection process restricting the number of equations to that of the unknowns. These resulting generalized MM-CC equations always contain the standard CC equations as a special case. Since, in the MM-CC formalism, the Schrödinger equation will be approximately satisfied on a subspace spanned by non-canonical configurations, this procedure may be helpful in extending the standard single reference CC theory to quasi-degenerate situations. To examine the potential usefulness of this idea, we explore the linear version of the CC approach for systems with a quasi-degenerate reference, in which case the standard linear theory is plagued with singularities due to the intruder states. Implications of this analysis for the structure of the wavefunction are also briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartlett R (1981) Annu Rev Phys Chem 32:359

    Google Scholar 

  2. Paldus J (1983) Coupled cluster approaches to many-electron correlation problem. In: Löwdin P-O, Pullman B (eds) New horizons of quantum chemistry. Reidel, Dordrecht, pp 31–60

    Google Scholar 

  3. Bartlett RJ, Dykstra CE, Paldus J (1984) Coupled cluster methods for molecular calculations. In: Dykstra CE (ed) Advanced theories and computational approaches to the electronic structure of molecules. Reidel, Dordrecht, pp 127–159

    Google Scholar 

  4. Bartlett RJ (1989) J Phys Chem 93:1697

    Google Scholar 

  5. Wilson S (ed) (1987) Methods in computational chemistry, vol 1, Electron correlation in atoms and molecules. Plenum, New York; see chapters by Jankowski K, pp 1–101, and by Urban M, Černušák I, Kellö V, Noga J, pp 117–239

    Google Scholar 

  6. Kaldor U (ed) (1989) Many-body methods in quantum chemistry, Lecture notes in chemistry, vol 52. Springer, Berlin (see sections on Coupled cluster methods and Quadratic configuration interaction, pp 125–232)

    Google Scholar 

  7. Jeziorski B, Monkhorst HJ (1981) Phys Rev A24: 1668; Lindgren I, Mukherjee D (1987) Phys Rep 151:93; Jeziorski B, Paldus J (1989) J Chem Phys 90:2714

    Google Scholar 

  8. Chiles RA, Dykstra CE (1981) J Chem Phys 74:4544

    Google Scholar 

  9. Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910; Noga J, Bartlett RJ (1987) ibid 86:7041; (1988) ibid 89:3401 (E)

    Google Scholar 

  10. Szalewicz K, Zabolitzky JG, Jeziorski B, Monkhorst HJ (1984) J Chem Phys 81:2723

    Google Scholar 

  11. Geertsen J, Oddershede J (1986) J Chem Phys 85:2112

    Google Scholar 

  12. Čárský P, Schaad LJ, Hess BA (1987) J Chem Phys 87:411

    Google Scholar 

  13. Scuseria GE, Scheiner AC, Lee TJ, Rice JE, Schaefer HF III (1987) J Chem Phys 86:2881; Scuseria GE, Schaefer HF III (1988) Chem Phys Lett 152:382

    Google Scholar 

  14. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968 (cf. also: idem (1989) ibid 90:4635 and Paldus J, Čížek J, Jeziorski B (1989) ibid 90:4356)

    Google Scholar 

  15. Kantorovich LV, Krylov VI (1958) Approximate methods of higher analysis. Interscience, New York, p 150

    Google Scholar 

  16. Szondy T (1963) Acta Phys Hung 17:303; Hedgyi MG, Mezei M, Szondy T (1969) Theor Chim Acta 15:273

    Google Scholar 

  17. Boys SF (1969) Proc Roy Soc (London) A309:195

    Google Scholar 

  18. Jankowski K (1976) Int J Quantum Chem 10:683; Jankowski K, Rutkowski A (1976) Theor Chim Acta 43:145; Jankowski K, Rutkowska D, Rutkowski A (1978) ibid 48:119

    Google Scholar 

  19. Jankowski K, Paldus J (1980) Int J Quantum Chem 18:1243

    Google Scholar 

  20. Adams BG, Jankowski K, Paldus J (1979) Chem Phys Lett 67:144; idem (1981) Phys Rev A24:2316, 2330

    Google Scholar 

  21. Paldus J, Wormer PES, Visser F, van der Avoird A (1982) J Chem Phys 76:2458

    Google Scholar 

  22. Coester F (1958) Nucl Phys 7:421; Coester F, Kümmel H (1960) Nucl Phys 17:477

    Google Scholar 

  23. Čížek J (1966) J Chem Phys 45:4256; idem (1969) Adv Chem Phys 14:35

    Google Scholar 

  24. Klahn B, Bingel WA (1977) Theor Chim Acta 44:9, 27; Bongers A (1977) Chem Phys Lett 49:393

    Google Scholar 

  25. Goldstone J (1957) Proc Roy Soc (London) A239:267

    Google Scholar 

  26. Hubbard J (1957) Proc Roy Soc (London) A240:539; idem (1958) ibid A243:336, A244:199

    Google Scholar 

  27. Mayer JE, Mayer MG (1940) Statistical mechanics. Wiley, New York, ch 13

    Google Scholar 

  28. Primas H (1965) Separability in many-electron systems. In Sinanoglu O (ed) Modern quantum chemistry, Istanbul lectures, Part II, Interactions. Academic Press, New York, pp 45–74

    Google Scholar 

  29. For details, see e.g.: Krasnosel'skii MA, Vainikko GM, Zabreiko PP, Rutitskii YaB, Stetsenko VYa (1972) Approximate solution to operator equations, ch 4. Wolters-Noordhoff Publishing, Groningen

    Google Scholar 

  30. Čížek J, Paldus J (1971) Int J Quantum Chem 5:359

    Google Scholar 

  31. Bartlett RJ, Purvis GD (1978) Int J Quantum Chem 14:561

    Google Scholar 

  32. Kümmel H, Lührmann KH, Zabolitzky JG (1978) Phys Rep C36:1

    Google Scholar 

  33. Paldus J, Čížek J, Jeziorski B (1989) J Chem Phys 90:4356

    Google Scholar 

  34. Arponen J (1983) Ann Phys 151:311; Arponen JS, Bishop RF, Pajanne E (1987) Phys Rev A 36:2519; Robinson NI, Bishop RF, Arponen J (1989) ibid 40:4256

    Google Scholar 

  35. Paldus J (1977) J Chem Phys 67:303

    Google Scholar 

  36. Paldus J, Čížek J (1975) Adv Quantum Chem 9:105

    Google Scholar 

  37. Handy NC, Pople JA, Head-Gordon M, Raghavachari K, Trucks GW (1989) Chem Phys Lett 164:185; Raghavachari K, Pople JA, Replogle ES, Head-Gordon M, Handy NC (1990) ibid 167:115

    Google Scholar 

  38. Chiles RA, Dykstra CE (1981) J Chem Phys 74:4544

    Google Scholar 

  39. Wilson S, Jankowski K, Paldus J (1983) Int J Quantum Chem 23:1781;

    Google Scholar 

  40. Pulay P (1983) Int J Quantum Chem S17:257;

    Google Scholar 

  41. Kaldor U (1985) Int J Quantum Chem 28:103;

    Google Scholar 

  42. Wilson S, Jankowski K, Paldus J (1985) ibid 28:525;

    Google Scholar 

  43. Iijima N, Saika A (1985) ibid 27:481;

    Google Scholar 

  44. Paldus J, Wormer PES, Benard M (1988) Coll Czech Chem Commun 53:1919;

    Google Scholar 

  45. Zarrabian S, Paldus J (1990) Int J Quantum Chem 38:761

    Google Scholar 

  46. Pauncz R, de Heer J, Löwdin P-O (1962) J Chem Phys 36:2247, 2257; de Heer J, Pauncz R (1960) J Mol Spectr 5:326; Pauncz R (1967) Alternant molecular orbital method. Saunders, Philadelphia

    Google Scholar 

  47. Paldus J, Čížek J (1970) Phys Rev A2:2268;

    Google Scholar 

  48. Paldus J, Boyle MJ (1982) Int J Quantum Chem 22:1281;

    Google Scholar 

  49. Takahashi M, Paldus J, Čížek J (1983) ibid 24:707;

    Google Scholar 

  50. Paldus J, Takahashi M, Cho RWH (1984) Phys Rev B30:4267;

    Google Scholar 

  51. Takahashi M, Paldus J (1985) ibid 31:5121;

    Google Scholar 

  52. Piecuch P, Zarrabian S, Paldus J, Čížek J (1990) ibid 42:3351;

    Google Scholar 

  53. Paldus J, Takahashi M, Cho BWH (1984) Int J Quantum Chem S18:237;

    Google Scholar 

  54. Paldus J, Piecuch P (1991) Int J Quantum Chem XX:XXX

    Google Scholar 

  55. Parr RG (1963) The quantum theory of molecular electronic structure. Benjamin, New York

    Google Scholar 

  56. Paldus J, Chin E (1983) Int J Quantum Chem 24:373; Takahashi M, Paldus J (1985) ibid 28:459 and references therein

    Google Scholar 

  57. See, for example, Baeriswyl D, Campbell DK, Mazumdar S (1990) An overview of the theory of π-conjugated polymers. In: Kiess H (ed) Conducting polymers. Springer-Verlag, Berlin

    Google Scholar 

  58. Piecuch P, Paldus J (1990) Theor Chim Acta 78:65; Čížek J, Vinette F, Paldus J (1990) Int J Quantum Chem 38:831

    Google Scholar 

  59. Čížek J, Vinette F, Paldus J (1989) Diagrammatic approach to the calculation of the lower bounds using optimized inner projection technique. Application to the cyclic polyene model. In: Kaldor U (ed) Many-body methods in quantum chemistry. Springer-Verlag, Berlin, pp 23–42

    Google Scholar 

  60. Piecuch P, Zarrabian S, Paldus J, Číźek J (1990) Phys Rev A 42:5155

    Google Scholar 

  61. Hashimoto K, Čížek J, Paldus J (1988) Int J Quantum Chem 34:407

    Google Scholar 

  62. Lieb EH, Wu FY (1968) Phys Rev Lett 20:1445

    Google Scholar 

  63. Mukherjee D (1981) Chem Phys Lett 79:559

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Killam Research Fellow 1987–89

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jankowski, K., Paldus, J. & Piecuch, P. Method of moments approach and coupled cluster theory. Theoret. Chim. Acta 80, 223–243 (1991). https://doi.org/10.1007/BF01117411

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01117411

Key words

Navigation