Skip to main content
Log in

A hierarchical design concept for shape optimization based on the interaction of CAGD and FEM

  • Research Papers
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

The numerical treatment of shape optimization problems requires sophisticated software tools such as Computer Aided Design (CAD), the Finite Element Method (FEM) and a suitable Mathematical Programming (MP) algorithm. Efficiency of the overall procedure is guaranteed if these tools interact optimally. The theoretical and numerical effort for sensitivity analysis reflect the complexity of this engineering problem.

In this paper we outline a general modelling concept for shape optimization problems. Hierarchical design models within Computer Aided Geometrical Design (CAGD) and the interaction of geometry and FEM lead to an efficient overall optimization procedure. Our concept has been derived, implemented and tested for shell structures but it is seen to be generally applicable.

After a short introduction containing the state of the art we give an overview of the numerical tools used and outline the interaction of CAGD and FEM within the overall optimization procedure.

The paper is mainly devoted to the hierarchical design space based on a hierarchical geometrical modelling. The major part of computational effort is consumed by sensitivity analysis related to the number of design variables. Therefore, this number should be limited and only few powerful design variables corresponding to the special interests of the considered problem should be defined. This procedure may lead to a considerable limitation of the design space. Based on a hierarchy in the geometrical model different types of design variables are introduced: design variables with global, regional and local influence. The new method is based on successive activation of these types of design variables. This procedure leads to a considerable reduction of computational time for the sensitivity analysis without loss of geometrical flexibility.

A new method of geometrical refinement and a successive adaptively driven expansion and reduction of the design space is described. It is based on the degree elevation or degree reduction of parametric curves and surfaces, respectively.

A numerical example illustrates the new method and the efficiency of the overall optimization procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banichuk, N.V. 1993: Shape design sensitivity analysis for optimization problems with global and local functionals. Lecture held at the Institute of Structural Mechanics and Computational Mechanics, University of Hannover

  • Banichuk, N.V.; Barthold, F.-J.; Falk, A.; Stein, E. 1995: Mesh refinement for shape optimization.Struct. Optim. 9, 46–51

    Google Scholar 

  • Banichuk, N.V.; Barthold, F.-J.; Falk, A.; Stein, E. 1996: Finite element analysis with mesh refinement for shape optimization.Control & Cybernetics 25, 657–664

    Google Scholar 

  • Barthold, F.-J.; Stein, E. 1994: A continuum mechanical approach for analytical sensitivity analysis in structural optimization. In: Neittaanmäki, P. (ed.)Proc. of the 5th Finish Mechanics Days (held at University of Jyväskylä, Finnland, May 26–27 1994).

  • Barthold, F.-J.; Stein, E. 1996: A continuum mechanical based formulation of the variational sensitivity analysis in structural optimization. Part I: Analysis.Struct. Optim. 11, 29–42

    Google Scholar 

  • Barthold, F.-J.; Becker, A.; Falk, A.; Rust, W. 1993: Zum Einfluß der Netzadaption bei der Formoptimierung.Zeitschrift für Angewandte Mathematik und Mechanik 73, 680–684

    Google Scholar 

  • Barthold, F.-J.; Falk, A.; Stein, E. 1994: Structural optimization for rubberlike materials using analytical sensitivity analysis. In: Gilmore, B.J.; Hoeltzel, D.A.; Dutta, D.; Eschenauer, H.A. (eds.)Advances in design automation, pp. 43–50

  • Becker, A. 1992: Strukturoptimierung stabilitätsgefährdeter Systeme mittels analytischer Gradientenermittlung.Technical Report F 92/1, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover

  • Beux, F.; Dervieux, A. 1994: A hierarchical approach for shape optimization.Eng. Computations 11, 25–48

    Google Scholar 

  • Bletzinger, K.-U.; Kimmich, A.; Ramm, E. 1991: Efficient modeling in shape optimal design.Comp. Sys. Engrg. 2, 483–496

    Google Scholar 

  • Braibant, V.; Fleury, C. 1986: Shape optimal design and CAD orientated formulation.Engng. with Comp. 1, 193–204

    Google Scholar 

  • Bremicker, M. 1989: Dekompositionsstrategie in Anwendung auf Probleme der Gestaltsoptimierung.Technical Report 173, Fortschritts-Berichte VDI

  • Bugeda, G.; Oliver, J. 1993: A general methodology for structural shape optimization problems using automatic adaptive remeshing.Int. J. Numer. Meth. Engrg. 36, 3161–3185

    Google Scholar 

  • Choi, K.K.; Chang, K.W. 1994: A study of design velocity field computation for shape optimal design.Finite Elements in Analysis and Design 15, 317–341

    Google Scholar 

  • Eschenauer, H.A.; Schuhmacher, A. 1997: Topology and shape optimization procedures using hole positioning criteria — theory and applications. In: Rozvany, G.I.N. (ed.)Topology optimization in structural mechanics, pp. 135–196. CISM Courses and Lectures, 374. Vienna: Springer

    Google Scholar 

  • Falk, A. 1995: Adaptive Verfahren für die Formoptimierung flächiger Strukturen unter Berücksichtigung der CAD-FE-Kopplung.Technical Report F 95/1, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität Hannover

  • Falk, A.; Barthold, F.-J. 1995: Ein hierarchisches Verfahren für die Formoptimierung.Zeitschrift für Angewandte Mathematik und Mechanik 75, 589–590

    Google Scholar 

  • Falk, A.; Barthold, F.-J.; Stein, E. 1995: Hierarchical modelling in shape optimization. In: Olhoff, N.; Rozvany, G.I.N. (eds.)Proc. WCSMO-1 (held in Goslar, Germany, May 28 – June 2, 1995), pp. 371–376. London: Elsevier Applied Science

    Google Scholar 

  • Farin, G. 1993:Curves and Surfaces for Computer Aided Geometric Design, 3-rd edition. London: Academic Press

    Google Scholar 

  • Hinton, E.; Özakça, M.; Rao, N.V.R. 1991: An integrated approach to structural shape optimization of linearly elastic structures. Part II: Shape definition and adaptivity.Comp. Sys. Engrg. 2 41–56

    Google Scholar 

  • Hinton, E.; Rao, N.V.R.; Özakça, M. 1991: An integrated approach to structural shape optimization of linearly elastic structures. Part I: General methodology.Comp. Sys. Engrg. 2 27–40

    Google Scholar 

  • Maute, K.; Ramm, E. 1994: Adaptive topology optimization.Struct. Optim. 10, 100–112

    Google Scholar 

  • Maute, K.; Ramm, E. 1997: Adaptive topology optimization of shell structures.AIAA 35, 1767–1773

    Google Scholar 

  • Ramm, E.; Bletzinger, K.-U.; Kimmich, S. 1991: Stategies in shape optimization of free form shells. In: Wagner, W; Wriggers, P. (ed.)Nonlinear computational mechanics, state of the art, pp. 163–192. Berlin, Heidleberkg, New York: Springer

    Google Scholar 

  • Rust, W.; Stein, E. 1992: 2D-Finite-Element Adaptations in Structural Mechanics, Including Shell Analysis and Non-linear Calculations. In: Zienkiewiccz, O.C.; Ladeveze, P. (eds.)New adavances in computational mechanics, pp. 219–232. Amsterdam: Elsevier Sciences Publ.

    Google Scholar 

  • Schittkowski, K.; Zillober, C.; Zotemantel, R. 1994: Numerical comparison of nonlinear programming algorithms for structural optimization.Struct. Optim. 7, 1–19

    Google Scholar 

  • Schramm, U.; Pilkey, W.D. 1993: The coupling of geometric description and finite elements using NURBS — A study in shape optimization.Finite Elements in Analysis and Design 15, 11–34

    Google Scholar 

  • Sienz, J.; Hinton, E. 1997: Reliable structural optimization with error estimation, adaptivity and robust sensitivity analysis.Comp. & Struct. 64, 31–63

    Google Scholar 

  • Stein, E.; Seifert, B.; Ohnimus, S.; Carstensen, C. 1994: Adaptive finite element analysis of geometrically nonlinear plates and shells, especially buckling.Int. J. Numer. Meth. Engrg. 37, 2631–2655

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falk, A., Barthold, F.J. & Stein, E. A hierarchical design concept for shape optimization based on the interaction of CAGD and FEM. Structural Optimization 18, 12–23 (1999). https://doi.org/10.1007/BF01210687

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01210687

Keywords

Navigation