Skip to main content
Log in

A semi-implicit mid-point rule for stiff systems of ordinary differential equations

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Summary

The paper introduces a new semi-implicit extrapolation method especially designed for the numerical solution of stiff systems of ordinary differential equations. The existence of a quadratic asymptotic expansion in terms of the stepsize is shown. Moreover, the new discretization is analyzed in the light of well-known stability models. The efficiency of the new integrator is clearly demonstrated by solving a series of challenging test problems including real life examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bader, G.: Numerische Behandlung steifer Differentialgleichungen mit einer modifizierten Mittelpunktsregel. Technische Universität München, Institut für Mathematik: Diploma thesis, 1977

  2. Bulirsch, R., Stoer, J.: Numerical Treatment of Ordinary Differential Equations by Extrapolation Methods. Numer. Math.8, 1–13 (1966)

    Google Scholar 

  3. Dahlquist, G.: A Special Stability Problem for Linear Multistep Methods. BIT3, 27–43 (1963)

    Google Scholar 

  4. Dahlquist, G., Lindberg, B.: On Some Implicit One-Step Methods for Stiff Differential Equations. Royal Institute of Technology, Stockholm: Tech. Rep. TRITA-NA-7302, 1973

    Google Scholar 

  5. Deuflhard, P.: A Study of Discretization Schemes due to Hersch with Application to Stiff Differential Systems. Lecture given at the Oberwolfach Meeting on “Numerical Treatment of Differential Equations”, July 4–July 10, 1976 (Unpublished)

  6. Deuflhard, P.: Order and Stepsize Control in Extrapolation Methods. Numer. Math.41, 399–422 (1983)

    Google Scholar 

  7. Deuflhard, P., Bader, G., Nowak, U.: LARKIN — A Software Package for the Numerical Simulation of LARge Systems arising in Chemical Reaction KINetics. Springer Series chem. Phys.18, 38–55 (1981)

    Google Scholar 

  8. Enright, W.H., Hull, T.E., Lindberg, B.: Comparing Numerical Methods for Stiff Systems of ODEs. BIT15, 10–48 (1975)

    Google Scholar 

  9. Garfinkel, D., Hess, B.: Metabolic Control Mechanisms VII. A Detailed Computer Model of the Glycolytic Pathway in Ascites Cells. J. Bio. Chem.239, 971–983 (1964)

    Google Scholar 

  10. Gear, C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. New York: Prentice Hall, 1971

    Google Scholar 

  11. Gragg, W.B.: Repeated Extrapolation to the Limit in the Numerical Solution of Ordinary Differential Equations. University of California. Los Angeles: Thesis, 1963

    Google Scholar 

  12. Gragg, W.B.: On Extrapolation Algorithms for Ordinary Initial Value Problems. SIAM J. Numer. Anal.2, 384–404 (1965)

    Google Scholar 

  13. Hindmarsh, A.C.: GEAR-Ordinary Differential Equation System Solver. Lawrence Livermore Laboratory: Tech. Rep. UCID-30001, Rev. 3 (Dec. 1974)

  14. Hofer, E.: A Partially Implicit Method for Large Stiff Systems of ODEs with only Few Equations Introducing Small Time-Constants. SIAM J. Numer. Anal.13, 645–663 (1976)

    Article  Google Scholar 

  15. Kaps, P., Rentrop, P.: Generalized Runge-Kutta Methods of Order Four with Step Size Control for Stiff Ordinary Differential Equations. Numer. Math.33, 55–68 (1979)

    Google Scholar 

  16. Lawson, J.D.: Generalized Runge-Kutta Processes for Stable Systems with Large Lipschitz Constants. SIAM J. Numer. Anal.4, 372–380 (1967)

    Google Scholar 

  17. Mirbeth, M.: Eine modifizierte Mittelpunktsregel zur numerischen Integration steifer Systeme von Differentialgleichungen. Technische Universität München, Institut für Mathematik: Diploma thesis, 1975

  18. Prothero, A., Robinson, A.: On the Stability and Accuracy of One-Step Methods for Solving Stiff Systems of Ordinary Differential Equations. Math. Comput.28, 145–162 (1974)

    Google Scholar 

  19. Scott, M.R., Watts, H.A.: A Systematized Collection of Codes for Solving Two-Point Boundary-Value Problems. SANDIA Lab., Albuquerque: Tech. Rep. SAND 75-0539, 1975

    Google Scholar 

  20. Shampine, L.F.: Evaluation of a Test Set for Stiff ODE Solvers. ACM TOMS7, 409–420 (1981)

    Google Scholar 

  21. Sherman, A.H.: NSPIV-A FORTRAN Subroutine for Gaussian Elimination with Partial Pivoting. University of Texas at Austin: Tech. Rep. TR-65, CNA-118, 1977

  22. Stetter, H.J.: Symmetric Two-Step Algorithms for Ordinary Differential Equations. Comput.5, 267–280 (1970)

    Google Scholar 

  23. Stetter, H.J.: Analysis of Discretization Methods for Ordinary Differential Equations. Springer Tracts in Natural Philosophy. Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  24. Stoer, J., Bulirsch, R.: Einführung in die Numerische Mathematik II. Berlin, Heidelberg, New York: Springer, 1973

    Google Scholar 

  25. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon, Oxford, 1965

    Google Scholar 

  26. Hairer, E., Bader, G., Lubich, C.: On the Stability of Semi-Implicit Methods for Ordinary Differential Equations. BIT22, 211–232 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bader, G., Deuflhard, P. A semi-implicit mid-point rule for stiff systems of ordinary differential equations. Numer. Math. 41, 373–398 (1983). https://doi.org/10.1007/BF01418331

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01418331

Subject Classifications

Navigation