Skip to main content
Log in

Taxonomic relationships ofThiobacillus halophilus, T. aquaesulis, and other species ofThiobacillus, as determined using 16S rDNA sequencing

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Total base sequences of the 16S rRNA genes ofThiobacillus halophilus andThiobacillus aquaesulis show that these bacteria fall into the gamma- and beta-subdivisions, respectively of the Proteobacteria. The closest relative ofT. halophilus isThiobacillus hydrothermalis (with 98.7% similarity), and the closest relative ofT. aquaesulis isThiobacillus thioparus (93.2% similarity). Physiological properties and mol% G+C content of their DNA serve to confirm that these four organisms are all distinct species. It is reiterated that the species currently assigned to the genusThiobacillus are clearly so diverse that they need reclassification into several genera. The type species,T. thioparus, is unequivocally placed in the beta-subdivision of the Proteobacteria, thus requiring that the use of the genus nameThiobacillus be restricted to the chemolithoautotrophic species falling into that group.T. aquaesulis andT. thioparus may thus be regarded as true species ofThiobacillus. The relatively large number of obligately chemolithoautotrophicThiobacillus species falling in the gamma-subdivision of the Proteobacteria need further study in order to assess the case for reclassification into one or more new or different genera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beijerinck MW (1904a) Ueber die Bakterien, welche sich im Dunkeln mit Kohlensäure als Kohlenstoffquelle ernähren können. Centralbl Bakteriol. Abt II 11:593–599

    Google Scholar 

  • Beijerinck MW (1904b) Phénomènes de réduction par les microbes. Arch Neer Sci (Sect 2) 9:131–157

    Google Scholar 

  • Beijerinck MW, Minkman DC (1910) Bildung und Verbrauch von Stickoxydul durch Bakterien. Centralbl Bakteriol Abt II 25: 30–63

    Google Scholar 

  • Drobner E, Huber H, Rachel R, Stetter KO (1992)Thiobacillus plumbophilus spec. nov., a novel galena and hydrogen oxidizer. Arch Microbiol 157:213–217

    PubMed  Google Scholar 

  • Durand P, Reysenbach A-L, Prieur D, Pace N (1993) Isolation and characterization ofThiobacillus hydrothermalis sp. nov., a mesophilic obligately chmolithotrophic bacterium isolated from a deep-sea hydrothermal vent in Fiji Basin. Arch Microbiol 159:39–44

    Google Scholar 

  • Felsenstein J (1988) Phylogenies from the molecular sequences: inference and reliability. Annu Rev Genet 22:521–565

    PubMed  Google Scholar 

  • Friedrich CG, Mitrenga G (1981) Oxidation of thiosulfate byParacoccus denitrificans and other hydrogen bacteria. FEMS Microbiol Lett 10:209–212

    Google Scholar 

  • Giovannoni SJ (1991) The polymerase chain reaction. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 177–203

    Google Scholar 

  • Goebel BM, Stackebrandt E (1994) Cultural and phylogenetic analysis of mixed microbial populations found in natural and commercial bioleaching environments. Appl Environ Microbiol 60:1614–1621

    PubMed  Google Scholar 

  • Gutell RR, Larsen N, Woese CR (1994) Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. Microbiol Rev 58:10–26

    PubMed  Google Scholar 

  • Katayama-Fujimura Y, Tsuzaki N, Kuraishi H (1982) Ubiquinone, fatty acid and DNA base composition determination as a guide to the taxonomy of the genusThiobacillus. J Gen Microbiol 128:1599–1611

    Google Scholar 

  • Katayama Y, Hiraishi A, Kuraishi H (1995)Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer ofThiobacillus versutus to the genusParacoccus asParacoccus versutus comb. nov. with emendation of the genus. Microbiology (UK) 141:1469–1477

    Google Scholar 

  • Kelly DP (1982) Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Philos Trans R Soc Lond B298:499–528

    Google Scholar 

  • Kelly DP (1985) Physiology of the thiobacilli: elucidating the sulphur oxidation pathway. Microbiol Sci 2:105–109

    PubMed  Google Scholar 

  • Kelly DP (1988) Oxidation of sulphur compounds. Soc Gen Microbiol Symp 42:65–98

    Google Scholar 

  • Kelly DP (1989) Physiology and biochemistry of unicellular sulfur bacteria. In: Schlegel HG, Bowien B (eds) Biology of autotrophic bacteria. Science Tech Publishers, Madison, pp 193–217

    Google Scholar 

  • Kelly DP (1990) Energetics of chemolithotrophic bacteria. In: Krulwich TA (ed) Bacterial energetics. Academic Press, San Diego, pp 479–503

    Google Scholar 

  • Kelly DP, Harrison AP (1989) GenusThiobacillus Beijerinck. In: Staley JT (ed) Bergey's manual of systematic bacteriology, vol 3. Williams & Wilkins, Baltimore, pp 1842–1858

    Google Scholar 

  • Kuenen JG, Robertson LA, Tuovinen OH (1992) The generaThiobacillus, Thiomicrospira, andThiosphaera. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokarytotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, application, 2nd edn. Springer Berlin Heidelberg New York, pp 2638–2657

    Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 177–203

    Google Scholar 

  • Lane DJ, Harrison AP, Stahl D, Pace B, Giovannoni SJ, Olsen GJ, Pace NP (1992) Evolutionary relationships among sulfur- and iron-oxidizing eubacteria. J Bacteriol 174:269–278

    PubMed  Google Scholar 

  • Ludwig W, Mittenhuber G, Friedrich CG (1993) Transfer ofThiosphaera pantotropha toParacoccus denitrificans. Int J Syst Bacteriol 43:363–367

    PubMed  Google Scholar 

  • Ludwig W, Schleifer K-H (1994) Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. FEMS Microbiol Rev 15:155–173

    PubMed  Google Scholar 

  • Maidak BL, Larsen N, McCaughey MJ, Overbeek R, Olsen GJ, Fogel K, Blandy J, Woese CR (1994) The ribosomal database project. Nucleic Acids Res 22:3485–3487

    PubMed  Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Google Scholar 

  • Neefs J-M, Van de Peer Y, De Rijk P, Goris A, De Wachter R (1991) Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 19:1987–2015

    PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Saunders SE, Burke JF (1990) Rapid isolation of miniprep DNA for double strand sequencing. Nucleic Acids Res 18:4948

    PubMed  Google Scholar 

  • Wiegel J (1992) The genusXanthobacter. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes. A handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, 2nd edn. Springer Berlin Heidelberg New York, pp 2365–2383

    Google Scholar 

  • Woese CR, Weisburg WG, Paster BJ, Hahn CM, Tanner RS, Krieg NR, Koops H-P, Harms H, Stackebrandt E (1984) The phylogeny of purple bacteria: the beta subdivision. Syst Appl Microbiol 5:327–336

    Google Scholar 

  • Wood AP, Kelly DP (1988) Isolation and physiological characterisation ofThiobacillus aquaesulis sp. nov., a novel facultatively autotrophic moderate thermophile. Arch Microbiol 149: 339–343

    Google Scholar 

  • Wood AP, Kelly DP (1991) Isolation and characterisation ofThiobacillus halophilus sp. nov., a sulphur-oxidising autotrophic eubacterium from a Western Australian hypersaline lake. Arch Microbiol 156:277–280

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann P. Wood.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonald, I.R., Kelly, D.P., Murrell, J.C. et al. Taxonomic relationships ofThiobacillus halophilus, T. aquaesulis, and other species ofThiobacillus, as determined using 16S rDNA sequencing. Arch. Microbiol. 166, 394–398 (1996). https://doi.org/10.1007/BF01682985

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01682985

Key words

Navigation